Archive | Tools RSS for this section

Powermatic Planer is Finally “Quiet”

Recently, I finally upgraded my Powermatic 180 planer to a spiral cutterhead, and I am here to tell you how much I love it. And yes, I do want to marry it.

18″ wide Powermatic 180 planer

I bought this machine at auction when I moved into the new shop, after I burned up my last planer in the fire. I’ve had it for about 8 years now, and for most of that time fought with keeping the blades sharp. I was excited when I bought it because it was made in America (not like the ones from Taiwan today), had a strong 7-1/2 horse motor, and I knew it would last the rest of my life. I especially liked the warning sticker on the front, which reminds me not to remove more than 1/2” of thickness at a time (like that is going to happen). The coolness continued with the fact that it had an on-board grinder to sharpen the knives without removing them from the planer. The coolness ended, however, with the blade setup.

A normal planer has three or four long blades, the width of the planer to shave the wood. This particular Powermatic planer, “The Quiet One” was outfitted with 27 short blades, which were placed in a staggered pattern in 9 slots, presumably to not have as much smacking of the blades against the wood and reducing the noise. Instead of three or four hard smacks per revolution, it would be broken down to 9 smaller smacks per revolution, running with more consistency in the noise level. I found this set up to NOT reduce the noise and to make knife setting and resharpening almost impossible, which explains why this design was not long-lived.

The original “Quiet” cutterhead had 27 short knives.

The little, 2” long knives, were held in with Allen screws which were supposed to also allow for height adjustment, but they were always jammed with wood and would take an act of God to get them loose. Even after we made a special hook-shaped tool to get them out, it would still take me at least a full day to reset all of the knives, and I still felt like they were subpar. Finally, after the last time resetting the knives, I told myself that once they were ground down enough to need resetting, I was going to replace that cutting head. I hadn’t done it up to that point because I am cheap and the new cutting head was in the $1,500 range, which was $500 more than I paid for the planer.

I ended up buying a Byrd Shelix carbide insert cutterhead. It has around 150 little carbide inserts with four cutting edges on them. When I opened the packaging it was quickly evident why it was so expensive – it was a thing of machining beauty. There are so many little cuts and angles and crazy geometry that it would make your head spin if you really had to figure it out. Even the little inserts have a little bit of bend along the cutting edge to make up for the fact that they are set up at an angle to make a shear cut. Nothing about it is straight or simple.

Newly installed Byrd Shelix carbide insert cutterhead

I had a friend of mine from the St. Louis Woodworkers Guild, former shop teacher Dan Coleman, install it for me. You would know (like I did) after talking to Dan for just a minute about machines and machine setup, that he was the guy to do it. It took him less than a day to dismantle my planer and swap out the new cutting head. I’m sure if I did it alone it would have taken much longer and I still wouldn’t be sure everything was right. After listening to several presentations by Dan about machine maintenance, I was sure it would be done perfectly, which it was.

When we ran the first board through the planer, it was amazing! It was so quiet, I didn’t even think it was cutting the wood! Even now, I need to look at the wood coming out of the planer sometimes just to make sure it is doing anything. The hum of the motor is usually about the same noise level as the actual planing. The funny thing is, going into this, I wasn’t so worried about the noise level, or at least I didn’t think I was. If I just got good planing results without having to fight with those stupid knives, I would have been happy, but the reduction in noise makes it almost unbelievable.

So, “What about the finish quality?,” you ask. Also, AHH-MAZING! Since the cutters are set at an angle and designed to make a shear cut, there is almost no tearout like normal planer blades, which hit the wood straight on and lift out chunks of wood while they are cutting. Even difficult-to-plane species, like hard maple, come through almost entirely unscathed. Now, I feel confident sticking boards in the planer, knowing they will come out the other side with the surface fully intact and not blown to bits. This speeds things up in the shop because we don’t need to spend so much time at the wide belt sander cleaning up after the planer.

Since the cutterhead was switched out, I have had a chance to test out the resharpening process, and it is so easy. Twice, I have rotated just a few of the carbide teeth, which got damaged by hitting a nail in the wood, and I had it back up and running, with a perfect finish, in just a few minutes. I have rotated all of the teeth once so far, and that was done in about an hour. The teeth loosen and rotate easily and fall right into perfect position – it is super simple. The sharpening process has gone from something I hated with every bit of my being to something I don’t even think about – a 100% non-issue. It just works, and works better than I could have ever imagined. I can’t believe I waited so stinkin’ long to do it.

How to Fold Up a Bandsaw Blade

Whenever I put a new blade on my sawmill, I fold up the old one to send it out for sharpening. I don’t find the process as awesome as I used to, but it still seems to intrigue others that haven’t seen me do it before. And, I must admit, when I know someone is watching that hasn’t seen me fold up a bandsaw blade before, I do it extra fast and super snappy to make it seem even more dazzling. With a quick flick of my wrists, the 50″ diameter loop of bandsaw blade is reduced to three loops at just 17″, making it easier to handle and ship out.

I learned how to coil a bandsaw blade like this pre-YouTube and over the phone from the kids at Wood-Mizer, who supply and sharpen my blades. It took a few tries to do it the first time and many more to get good at it, but I figured if I could learn it over the phone then I could certainly show others how to do it with visuals. The good news is that like learning to ride a bike, once you get it, you’ve got it.

It all starts with a pair of gloves and holding the blade with the teeth facing up.

To prepare, put on some gloves (without holes). Start by holding the blade with each of your hands on the outside of the blade, away from your body and parallel to the ground with the teeth facing up. Imagine that you are holding out a large basketball hoop in front of you waiting for someone else to take a shot. From there, whip the portion of the blade furthest from you towards the ground and just as the blade nears the ground give it a quick jerk up, with a snap. This motion will make the blade start to fold in half, with the teeth going away from you. At the same time that the blade starts to fold in half, simply twist both of your wrists towards the inside of the loop. If your timing is right, you will get to a certain point where the blade no longer wants to fight you and then it will just spring into three loops.

When first learning to coil a bandsaw blade, you can cheat by using the ground to help you get started.

When you are first learning this technique you may find it helpful to get a feel for it by cheating a bit. Start just as described above while standing on carpeting or grass or some other surface that is soft and will grab the teeth of the saw blade (I show it in the photos using a piece of lumber). Now, instead of whipping the blade towards the ground, just drop the end furthest away from you to the ground, so that the blade is now perpendicular to the ground. Use the soft and grabby surface to snag the teeth as you start to lift and push the blade up an away from you. Instead of getting the blade to fold in half with a whip motion, you are now going to get it to fold by pushing against the soft floor. As the blade starts to fold in half, with the teeth away from you, roll your wrists to the inside of the loop, just like described above. Using this method, you will be able to feel the exact point where the blade stops fighting you and happily coils into three loops. You should be able to get a feel for it after just a few times with this “cheating” method and then move on to the fancy, snappy method.

As the front of the blade starts to fold down and towards you, twist your wrists and push towards the inside of the the loop.

 

When your hands move to the inside of the loop, the back of the blade (closest to you) will curve down.

 

After a certain point the blade will jump into three loops and stay there. Now you’ve got it!

 

Multiples Stack Up or Measure Up (you pick)

I am a woodworker, and as a woodworker I live by a certain set of norms which dictate that I be accurate, but not ridiculously accurate. After all, wood changes size all of the time, so there is a limit to how accurate we can be and how much we should really worry about it. For most of us, a few measurements in a job are critical and the rest of the pieces are fit to look good. We may use measurements as a jumping off point, but it isn’t uncommon to trim a bit here and plane a bit there.

When I am in the shop, I always have a tape measure hanging off of my pocket for anything that needs to be measured. I use it a lot, but mostly for rough measurements, like making sure a piece of wood will be big enough for what I have in mind. I also use it for more critical measurements, but I try my best to find ways to not use measurements when things start to get critical. For example, instead of measuring, I will use a scrap piece of wood as a spacer. That way I don’t need to worry every time about reading the tape measure wrong, and I know that all of my spacing will be very consistent.

As much as I try to avoid being fussy about my measurements, sometimes they need to be a little more accurate. One of the tools where accuracy is important is the planer. If I want 1″ thick wood, I want to know that it is 1″. Now, more engineery people might reach for their calipers, but for those of you like me, with only a tape measures on your belt, I have a very accurate way to make perfectly sized parts – just stack them up.

The target for this table saw run was 1″. The samples from the cut were close, especially the one in the middle, but adding all of them up confirms that they are a bit wide.

Here’s the logic. If your measurements are just slightly off, you may not notice it in just one piece, but as you add up the pieces you also add up the differences and they become much more obvious. Just run a scrap piece of wood through the planer, chop it into 3, 4 or 5 pieces, stack them up and measure them. 5 pieces of wood that are 1″ thick should measure 5″ – simple de dimple. If your 1″ thick board isn’t exactly 1″ thick, you will see it, even without calipers, and then you can adjust the thickness.

That’s better! Three pieces measure 3″ wide. The average is 1″. Let’s run some parts!

The beauty of this system is two-fold. First off, you don’t need to worry about having calipers (after all, those are for kids that work at Boeing and have really clean floors). Second, it gives you a more accurate real-world reading of what is coming out of your machine. We all know that a board coming out of the planer has dips and doodles in the wood and can range in thickness depending on the spot that you measure. Adding up several pieces of wood gives you not only a measurement that is accurate, but it is also closer to the average. We are only talking small amounts here, but if you are setting up to plane a bunch of lumber, it is great to know what the bulk of it is going to measure.

When running enough wood through the planer to make thousands of little sticks with thousands of little spaces, as in this wine cellar racking, accurate tool setup is critical and easy to verify by stacking up multiples.

I use this system to double-check measurements on other tools as well. It works great on the table saw to make sure that your 3″ wide board is really 3″. Instead of cutting just one sample board 3″ wide and determining that it looks really close, cut 3 or more and add them up. Assuming that you can do a little simple math, you will be able to tell if the 3″ mark is consistently spitting out 3″ boards and not 2-63/64″ boards.

When using my fancy measuring shortcut, there is one important rule to follow. Make sure the tongue on your tape measure is accurate or don’t use the tongue at all. If you don’t trust the tongue on your tape measure then take a reading starting at the 1″ mark to check the distance and then just subtract 1″ from your reading (and then hope that a holiday is quickly approaching that might lend itself to the arrival of a new tape measure).

Setting Up Shop: The Most Useful Power Tools

When customers visit my shop we usually start by talking about their wood needs. If it is someone’s first time to visit I also try to get to know them, what they are looking for and what they are expecting from me. Half of them are just looking for rough cut wood, while the others are looking for wood that is processed a little bit more, perhaps jointed or planed, or even sanded. During our time together I get to understand their needs and abilities, and our discussion usually turns to the tools they have in their shop.

I am often surprised at what tools woodworkers don’t use or own, especially when they are some of the few that I find essential. Sometimes it’s just the difference between hand tool and power tool guys, but sometimes it’s just from lack of experience or the fact that they haven’t given it too much thought. Most likely they just buy tools as they need them and never really considered what tools would give them the most bang for the buck.

Since this is a common conversation, I decided to compile the following list of what I think are the most useful power tools and should be the building blocks of any woodworking shop:

Notice how my table saws can work both as a table and a saw.

Table saw. Of all of the tools in the shop, the table saw is the most useful and versatile. It excels at making straight cuts, and with the addition of any of a million jigs, can be made to perform an amazing number of tasks with repeatability and precision. I use the table saw for roughing out smaller parts from larger pieces, all the way through trimming parts to final size. The only limit to the table saw is that the piece needs to be small enough to be pushed through it. Above a certain size, the table saw becomes less useful and even impossible to use as the saw needs to be brought to the piece, instead of the piece being brought to the saw.

The table saw is best suited for making rip cuts, which are cuts along the length of the board, but with a crosscutting jig, the table saw can do just as well on crosscuts, which are cuts across the board. I even use the table saw for resawing thick lumber into thinner boards. The bandsaw is usually the tool for resawing, but any lumber under 6″ wide can be resawn on a 10″ table saw by cutting from both sides of the board.

Besides just making through cuts, the table saw can also cut dados, rabbets and other grooves with just a few adjustments. And, with the addition of profiled cutters and a creative mind, the table saw can be used to make all kinds of mouldings, including large crown mouldings.

The table saw also works amazingly well as a table. Mine is big enough to not only hold stuff, but serve as an assembly table when necessary. The table of the table saw is set apart from other tables because it is commonly the only one open and available in the shop. I try to keep it clear enough to actually use, which means that at least part of the top is usually available and ready to be used as a table or maybe even a saw.

My Powermatic planer has prettied up a lot of wood.

Thickness Planer. Running a rough board through the planer is always fun. Even after sending billions of board feet through a planer, it never gets old. The amazing thing is that beyond making the wood look good, the planer can size lumber in ways other tools can’t.

I have met a lot of customers that don’t have a planer. And, while it is possible to operate without one, I believe that once you own one, you will find it hard to believe that you ever ran a shop without it. For me, it is along the same line of thinking for spray guns, where I say, “Stop thinking about buying a spray gun.”

Even if you buy your lumber already planed, you will still encounter many circumstances that require the use of a planer. For example, you might want to build a simple and delicate jewelry box out of small scrap pieces lying around the shop, and you will end up making a small and clunky jewelry box because all of your lumber is 3/4″ thick, and that’s how it is going to stay. That is just the first example. Think about all of the other times that you will pick up a piece of lumber in the shop and it will be the wrong thickness, either just slightly wrong or in an entirely different size category. A planer is a real problem solver and can fix all of that.

If you work with rough lumber, a planer will be absolutely necessary, except for the most rustic of projects. Every piece of rough cut lumber ends up somewhat not straight, not flat and not consistent in thickness, either from variations during the sawing or from stresses which occur while the wood dries. The planer, combined with the jointer, is a one-two punch to remove these variations and produce straight, flat and consistently thick lumber. The reason the planer is ahead of the jointer on this list is that some lumber is straight enough and flat enough to plane without jointing if the job is a little less finicky, thereby skipping the jointer.

Flattening the face of a board before going through the planer makes assembly so much easier.

Jointer. I use my jointer a lot. When preparing rough lumber it sees as much action as the planer. As a matter of fact, almost every piece of lumber in my shop gets surfaced on the wide face to straighten things out before it even heads to the planer. Without the jointer, my life would just be a crooked, twisty mess of painful attempts to make things seem straight.

One of the misconceptions about planers is that they make lumber straight. They do some straightening, but they don’t make lumber straight. That is what jointers do. Many lumber mills just send rough lumber through the planer allowing the board to exit the machine with the same ups and downs and whoops that is entered with, only now to a consistent thickness. This is especially apparent when gluing up a couple of these roller coaster type of boards and trying to get them to line up. After a couple of those glue-ups, you will swear by lumber that has seen the jointer before the planer, and never skip the jointer.

Besides flattening lumber, the jointer also puts a straight edge on lumber for joining two boards together and for running through other machines. I also use the jointer for making small adjustments during the final fitting of parts like drawer fronts, where small changes can make a big difference.

With these three power tools (and a few hand tools), I feel like I could make about 80% of the jobs that come through my shop on a daily basis. Obviously, some jobs will require more specialized power tools to complete, but these three probably find their way into almost all of my work. With that said, there are a few other tools that I couldn’t imagine being without and I feel need to be added to the list.

Spray gun. Not every woodworking job gets a film finish, but most of mine do. And of those, every one will meet a spray gun. For a million reasons, including making finishing fast and fun, I recommend using a spray gun whenever possible. It will raise your game and make you n0t hate finishing. (Click here to read my thoughts on purchasing a spray gun).

The chop saw (compound miter saw ) gets a lot of use, especially trimming long pieces of wood.

Chop saw (compound miter saw). I do a mix of woodworking from furniture to built-ins and even finish carpentry, and I find myself regularly using the chop saw. Even if used for nothing more than roughly cutting a long board into two shorter ones to fit in a car, this tool earns its keep. It is especially useful (with the help of an outfeed table) on long pieces that are precarious to push through a table saw. But, since a table saw with a jig can perform many of the same functions, this tool doesn’t make it to the essential list. With that said, I expect to have a chop saw wherever I am working, whether it be in the shop or at an install. If this was a post about on-site woodworking and trim carpentry, the chop saw might be the #1 tool.

I have three impact drivers and could use more.

Impact driver. I am a giant fan of impact drivers. I have been using them for a while now and can’t really remember my life before them (Click here to read more about my introduction to impact drivers). This is the one tool that I always have with me, and I expect to be within easy reach. So much so, that I own three of them and could imagine myself with a couple more. Like the chop saw, if this was a list of on-site or installation tools, the impact driver would be near the top.

The FatMax is my favorite tape measure.

Tape measure. I know this isn’t a power tool, but it is the one tool that you should always have with you. It is a pet peeve of mine – if you are planning on building something, or you are actually building it, have a tape measure with you. If you are in the shop, on the job site, or even at Home Depot make sure you have a tape measure with you or at least one very handy (Home Depot probably isn’t the best example, since they have them widely available, but you get the point). Without a tape measure, not much beyond rough work can get done. (Click here to read about my favorite tape measure).

 

New Drone Sander Makes Quick Work of Toughest Projects

The new “Whirl-Wizz” drone sander comes complete with an array of sanding pads available for both wood and drywall applications.

For all of you out there that hate sanding, there is a new fun-to-use tool that takes almost all the work out of it, and may even make it fun. The new “Whirl-Whizz” sander combines the sanding power of four orbital sanders with the joy of playing with your favorite christmas present to make short work of even the most difficult sanding.

“We always had trouble finding anyone that wanted to sand the bottom of our slab tables and other hard to reach surfaces, like wood beams and ceilings,” says Scott Wunder from WunderWoods Custom Hardwoods.  “That was until we started using the “Whirl-Whizz.” Now everyone in the shop wants to sand. Our only problem now is making sure that we have enough sandpaper on hand”.

The Whirl-Whizz sander in action, finish sanding a wood ceiling.

The “Whirl-Whizz” sander looks like a standard hobby drone with just a few modifications, but don’t be fooled, this thing is a real workhorse. The four thin plastic spinning rotors provide the perfect balance between power and finesse by pulling the sander strongly to the surface, but deflecting and riding any slight contour changes throughout the process. The end result is a super smooth, consistently sanded surface that requires no hand sanding – that’s right, no more hand sanding.

“This thing works so good that the guys started using it in places that it was never meant to go,” Wunder continued. “After they figured out how to get it to spots other than the underside of horizontal surfaces, they found it worked better than any sander they had ever used. Before long they were sanding every surface with it, top, bottom, vertical, horizontal – it didn’t matter. If they could get the “Whirl-Whizz” to run into it, then they would sand it.”

As a busy business owner with lots of sanding to get done, Wunder has ordered ten more units to make sure that he always has a sander at the ready. The current average life span of the “Whirl-Whizz” sander, including rotor wear and incidental contact with unintended targets is about 15 minutes, but Wunder expects those numbers to go up as everyone at WunderWoods gets better at operating this new generation of sander. “Every new tool takes a while to master, and this is no different,” Wunder said defending his team. “A new battery will sand for approximately six minutes. As those batteries get older and have to spend more time on the charger, the life-span of each of our units will increase as it is used less. It really is just a matter of time.”

Another benefit to shop owners besides the flawless results is that every “Whirl-Whizz” sander features an on board camera, which can be used for up-close inspection of a surface. By simply pushing a button for a still picture or holding the button for a video, it is now ultra easy to see what is really going on close-up. Many shop managers use the camera system remotely on their phone to make sure that their employees are performing as expected, even when they are away. At WunderWoods however, Scott points out, “We are having so much fun with the “Whirl-Whizz” that I didn’t even know it had a camera.”

 

How Much Lacquer Thinner Should I Use?

Today, I was having a conversation with one of my customers about spraying a conversion varnish (Krystal, from M.L. Campbell) and the problems he was having with getting it to lay down nicely after it was sprayed. He said that he applied is wet enough to blend together and not be rough, but that he had a lot of orange peel in the finish. After discussing the possible causes of the orange peel it became obvious that he needed to add lacquer thinner to the mix, which he did not do.

This customer is new to spraying conversion varnish, which is a two-part mix that sets up and hardens chemically like epoxy, forming a super durable finish. The information on the can talked about the 10:1 ratio of finish to catalyst, but apparently didn’t mention a thing about thinning with lacquer thinner, so he used none. Even if it was mentioned, I assume that he was worried enough about getting the ratio correct (click here to learn how to easily get the proper mixing ratios) and not messing up the mix that he never imagined he could, or even that he should add lacquer thinner.

In this case, my customer was getting orange peel because the finish was too thick for his two-stage turbine. The kids at the finish distributor led him to believe that he shouldn’t need to add thinner, but they did not ask about the power of his spray equipment, assuming that he probably had a turbine strong enough to finely atomize the finish without thinning.

This Graco 2-quart pressure pot system I currently use is an older 2-stage model, but gives good results with proper thinning.

I continued to discuss the need to add thinner with my customer, and pointed out that a non-thinned finish requires more turbine power than he currently has. If he owned a 4-stage or 5-stage turbine, he could probably use the finish without thinner, but not with just a 2-stage. I speak from experience on this one, because my everyday gun is an older 2-stage model, and it requires at least a bit of thinning on almost everything I spray. I am okay with this apparent shortcoming because I am a proponent of applying multiple thin coats, as compared to fewer thick coats, which I believe are just inviting trouble.

As our conversation continued, he asked the million dollar question, “How much lacquer thinner do you add?” For me, the simple answer is, “Until it sprays good,” which is very ambiguous I know, but true. I have an advantage because I have sprayed more than him and I have an idea where I am headed, but I don’t truly know until I shoot a sample board with it and see how things are flowing (which I do every time before I spray the real thing). I spray a sample piece of wood standing up vertically to make sure that I can get a fully wet and flat surface with no runs or sags and to get a feel for how fast I need to move the gun to make all of that happen. If the sample surface looks good, I move on and spray the real thing. If I have issues, it is usually because the finish is a bit thick, so I add lacquer thinner until the finish sprays smoothly without orange peel and without runs.

A viscosity cup like this Ford 4 style, available from Highland Woodworking is a good starting point.

Another, more technical way to determine the correct amount of thinner is to use a viscosity cup. A viscosity cup is shaped like a funnel and determines how thick a fluid is by the time it takes to empty the cup. A thin fluid will empty in just a couple of seconds, while a thick fluid might take 30 seconds or more. When I started spraying and used a viscosity cup, about 15 seconds was the right amount for my gun, but it will vary from gun to gun. When learning to spray, I recommend using a viscosity cup and to follow the manufacturers recommendations. If nothing else, this will give you a good starting point from which you can make later changes and have a way to achieve consistent results. After you spray for a while, there will be less mystery, and you will know from one test shot what needs to be adjusted, even without the viscosity cup.

When my customer asked about adding lacquer thinner, I know he was worried about possibly adding too much, and after thinking about it, I don’t know that you can add too much. I can follow the logic that adding too much thinner may change the chemistry, but I mix the 10:1 ratio of conversion varnish to catalyst first and then add the thinner, so there should still be the same amount of resin and catalyst, just with more space between them, in the form of lacquer thinner which will quickly evaporate and let the two parts do their thing. Even with other lacquer products, which includes sealers, nitrocellulose lacquers and modified lacquers, I can’t think of any time that I have ever had a problem because I added too much thinner.

I’m sure finish manufacturers would disagree and warn you to not be so cavalier about it, but I sure wouldn’t worry about adding too much thinner. Simply add enough thinner until your spray gun is able to apply a nice, even and wet film that flows out flat and dries without sagging. Even if you do mix it a bit thin, feel confident knowing that you can always compensate by moving more quickly or reducing the amount of fluid coming out of the tip of the gun.

Lucas Sawmill Is Small But Mighty


Scott Wunder of WunderWoods laying on giant white pine live natural edge milling

My sawmilling adventures began with an Alaskan chainsaw mill, which is just an attachment for a chainsaw to allow it to repeatedly cut a log lengthwise into lumber. It wasn’t anything fancy, and while it produced fine lumber, it was painfully slow to use. It didn’t take too many hours of me directly sucking in sawdust and fumes, while sweating my butt off, to start shopping for a more capable sawmill.

When I started my search, I considered bandsaws made by companies smaller than Wood-Mizer or TimberKing or Baker in a quest to also find smaller prices. While searching, I found several mills that looked suitable in the $5,000-$10,000 range, and I also came across a new “swing mill” from Australia called a Lucas mill.

The bandsaws looked to be a good choice as far as production went, but I didn’t have any way to move logs at the time, so the Lucas won out. It’s ability to easily break down and set up on site, while fitting in the bed of a pickup truck made it the clear choice, especially for larger logs. I say clear choice, but it wasn’t an easy choice. I didn’t like that the basic mill, fitted with a circular blade, was limited to 6″ or 8″ wide lumber without the optional slabbing bar attachment. And, my biggest fear was that this new mill from Australia, that I knew nothing about, might not be as good as it appeared in the videos.

Unfortunately, my fears were NOT immediately allayed. I went to pick up the more than $10,000 sawmill at the shipping terminal, and I couldn’t help but feel like I way overpaid for the amount of merchandise I picked up (Did I mentioned that it fits in the bed of my pickup truck?). There was only a sawhead, two long rails, and a few other miscellaneous metal parts that formed the frame ends. Besides that, the kit included a sharpener and some other odds and ends, but none of it added up to very much. I started doing the cost per piece arithmetic in my head, and it wasn’t looking good.

Here I am reading directions and setting up the 6" Lucas mill for the first time.

Here I am reading directions and setting up the 6″ Lucas mill for the first time.

Regardless of my buyer’s remorse, I was tickled to have a “real” sawmill and set it up in my back yard the very first chance I got. After just a short time reviewing the directions, I had the sawmill set up and ready to cut. Even for someone who had never set one up, the Lucas went together fast. It was then that I realized what I had paid for. I didn’t pay for lots and lots of parts and extra bulk. I paid for an impressively designed machine, with an amazingly small stature, than can tackle the biggest logs. I paid for all of the research and design that went into the mill by the Lucas boys, and I paid to not lug around thousands of extra pounds, and I paid for everything to go together with minimal effort and a minimal number of steps. I got all of that and more.

From a design standpoint, I can confidently say that every part of the Lucas mill is well-planned and simplified beyond belief. The only mechanisms that I have ever had a problem with are the winches that raise and lower the ends of the long rails. They work perfectly fine and they are quite smooth, but they can be dangerous. When fully loaded with weight, it is possible to release the winch and lose control, resulting in a violently swinging handle that can smash your arm and allow the sawhead to come crashing down. I know from personal experience, as this has happened to me more than once, with the last instance leaving me at the hospital with a possible broken arm (luckily it was just a very bad contusion). If they were to ask, I would recommend that the winch system be built like the raising and lowering mechanism on my TimberKing 1220 manual mill, which magically is able to easily raise and lower the sawhead with complete control and without the possibility of having a disastrous crash. I have no idea how it works, but it smoothly operates the sawhead with a very heavy 15 hp electric motor attached to it like it isn’t there at all.

Even logs this size, like the one I milled for Martin Goebel of Goebel and Co. Furniture can be milled with the Lucas mill.

Even logs this size, like the one I milled for Martin Goebel of Goebel and Co. Furniture can be milled with the Lucas mill.

Now that you know to watch your arm and to be careful when lowering the sawhead on the Lucas mill, I can continue telling you how wonderful the Lucas mill is. First off, realize that I bought a Lucas mill in 1995, so I have been using one for about 2o years now, and I still use it on a regular basis. It is a very versatile machine that can handle big logs with ease. I often get asked how big of a log I can handle, and with the Lucas mill in my corner, I can just answer, “Yes.”

Currently, I use the 8″ model, which means that with the 21″ diameter circular blade attached it can produce up to 8″ x 8″ dimensional lumber. I rarely cut 8″ x 8″, but the mill can easily be adjusted to cut any dimensions under 8″. I often cut 1″ and 2″ thick lumber by 8″ wide.

The Lucas mill is called a “swing” mill because the blade can flip or swing with the pull of a lever from the horizontal to vertical position and right back again. The cool part is that both of the cuts line up with each other and work in concert to produce accurate and straight, completely edged lumber without a dedicated edger or any extra handling. In contrast, to edge lumber on a bandsaw mill requires flitches (lumber with bark edges) to be stood up in the mill and cut one or two more times to produce lumber with four square edges.

In the 1990's, I used the 6" Lucas mill to produce lots of 1" thick, fully-edged lumber.

In the 1990’s, I used the 6″ Lucas mill to produce lots of 1″ thick, fully-edged lumber.

When cutting dimensional lumber I can easily work by myself making the vertical cut walking backward, then making the horizontal cut walking forward and finishing by sliding the cut board backward and out of the way. After a quick repositioning of the sawhead and a flip of the blade, I am back to cutting another piece of lumber. When cutting dimensional lumber like this I get in a rhythm–walk backward, flip blade, walk forward, slide board, move and flip blade, then repeat. The first cuts on the outside of the log are firewood, but after one pass across the top of the log and then dropping the mill to the next set of cuts, almost every pass produces an edged piece of lumber.

Scott Wunder of WunderWoods milling a large white oak slab on the Lucas mill for Martin Goebel of Goebel and Co. FurnitureWhen I first got my Lucas mill I used it with the circular blade most of the time. Everything I produced was fully edged. Big slabs weren’t in style, so I didn’t even own a slabber, let alone use one. Now things are different. Live edges are in and so are big slabs, so the slabber is on the mill most of the time. The slabber is an attachment that turns the sawhead into a giant 2o hp chainsaw mill, with a maximum cut of 64″ wide.

I use the Lucas mill with the slabber attachment to cut all of my big logs that will produce slabs for table tops. With the slabber attachment the Lucas is not fast, but it can cut much wider than my bandsaw mill (maximum cut of 29″ wide), and it doesn’t make sporadic wavy cuts like the bandsaw mill. Knowing that I won’t get a miscut on a high-priced piece of wood gives me a great piece of mind.

The Lucas mill is great at flattening live edge slabs too.

The Lucas mill is great at flattening live edge slabs too.

These days when the slabbing attachment isn’t on the mill, the circular blade is, but not for milling lumber. I have been using it to flatten my kiln-dried slabs, and as long as the blade is sharp, it works great. After I move the slab into position, I just skim the surface with the mill to remove the high spots. Next, I flip the slab, drop the mill a bit and skim the other side. The end result is a perfectly flat slab, ready for final planing. The kids at Lucas sell planing and sanding attachments, but I haven’t used or purchased either one since I finish almost all of the slabs with the power hand planer or wide-belt sander.

Every time I use the Lucas mill, I am reminded how well it works, from quickly setting it up to making small adjustments, everything is simple. And, I know when I show customers how capable it is, they are impressed that such a lightweight, easy-to-setup mill can do so much.

Note: While Lucas is more than welcome to pay me to endorse their mills, as of now they do not. This was written for educational purposes and to let others know how my slabs are produced.

 

Sharpen Your Bandsaw Blade on the Mill

Through the years I have dulled a lot of bandsaw blades on my sawmill, and for the longest time, I have struggled with keeping them sharp. I have tried multiple tools and methods to get this done, but only within the last year do I feel like I have found a good solution.

The problem starts with the bandsaw blade itself. It is a finicky conglomeration of bent teeth, cut from a thin piece of flexible steel that is somehow supposed to cut a straight line, not only from front to back, but also side to side, and if it isn’t well machined and sharp, there isn’t a snowball’s chance that this is going to happen.

Early in my career, when a new saw blade dulled and started to cut waves, I would try things like adding tension to the blade, slowing down my feed rate or even adjusting my blade guides. No matter what I tried, a dull blade would still make a wavy cut. However, if I used the exact same setup but installed a new blade, the cut would be perfect again. As a matter of fact, almost every other adjustment could be less than perfect and a sharp blade would still make a good cut. From 15 years of experience, it is clear that I need to keep my saw blade sharp and touch nothing else.

My standard course of action is to put on a new or newly sharpened blade from Wood-Mizer when my cut starts getting wavy. This is a great way to live. Nothing cuts like a brand new blade, and it feels like a treat to put one on. Even the resharpened blades cut great since they get a complete factory treatment, including cleaning and full tooth grinding and setting. I have always had great results from Wood-Mizer, and I highly recommend their new blades and resharpening service. (Disclaimer: I am not being paid by Wood-Mizer and Wood-Mizer doesn’t know I’m writing this post – they probably don’t even know I exist.)

The problem for me was that time in between cutting like new and cutting like crap. I would have a blade that was cutting great, but I could feel it pulling hard and on the verge of cutting poorly. I didn’t want to pull it off of the saw because it was running so well, but at the same time I knew my time was limited. If I could just get an edge back, I could keep cutting with the same blade and not have to mess with sending the blade off to be sharpened, and I would save $7 (by the way, I think $7 is a great price for the quality of service, but I would rather not spend it if I don’t have to). So, off I went, looking for a way to sharpen blades on my own.

In the past, I tried using a manual sharpener that came with my first bandsaw mill. It functioned like it was designed to, but the results weren’t great. Besides having to take the blade off of the mill and set it up in the sharpener, it used a stone that wore down quickly and wouldn’t maintain a flat, consistent face on the tooth (looking back, I probably should have tried some other stone options, but I didn’t).

Later, I tried a few other approaches. The first was using my chainsaw grinder, like the one below, which had a similar problem to the first grinder. The small stones would wear down quickly and the thin bandsaw blade would basically cut the stones in half.

This grinder is great for chainsaws, but not for bandsaw blades because the stones wear down too fast.

This grinder is great for chainsaws but not for bandsaw blades because the stones wear down too fast.

The next attempt used a sanding disc on a drill. I liked the idea of using sandpaper because it maintained a flat surface during grinding – it would wear down, but not change shape. This one showed potential, but it was incredibly hard to control because the spinning motion pulled the drill up and away from the blade.

I finally gave up, feeling like I had exhausted every option cheaper than buying a fully automatic grinder like the factory has, but I never gave up on the idea of sandpaper as a good abrasive that doesn’t change shape.

Up to that point, all of my attempts focused on sharpening the saw by grinding the front of the tooth. There was nothing else I could think of that would fit between the teeth and grind the front of them. But, then I thought about grinding the top of the teeth. This surface is easier to get to and taking material off of the top will still lead to a sharp point – it doesn’t really matter which face gets ground down.

I started off with my 3″ Porter-Cable belt sander just to try things out and it worked great. I could sand the top edge of the tooth with control and the speed was slow enough to not feel like I was burning the metal (which softens the teeth). The only problem was the weight of the belt sander, which might as well have been 1,000 lbs. because there was no way I could hold it to sharpen all of the teeth on the blade.

At the time I didn’t own a small belt sander, so I took a gamble and purchased a Porter-Cable 371 compact belt sander. I figured that even if it didn’t work for the blade sharpening I would at least have another tool in my woodworking arsenal and that there were going to be plenty of times when a small belt sander would come in handy. Finding other uses for the new sander hasn’t been much of an issue though, because it works great to sharpen blades, and it is always parked (plugged in) right next to my saw, ready for the next dull one to come along.

Using a small belt sander works great to touch up bandsaw blades.

Using a small belt sander works great to touch up bandsaw blades.

I simply leave the blade on the saw and grind just enough off of the top of each tooth to get the edge back. I use my free hand to steady the blade and to advance the saw to the next tooth. In a matter of just a few minutes I can be back to cutting, feeling like I have beat the system.

I use my left hand to stabilize the blade and to advance it to the next tooth.

I use my left hand to stabilize the blade and to advance it to the next tooth.

Now, there are limits to sharpening your saw like this. First off, no matter how good you get with the sander, the blade will not be as good as a new one or one that has had a full factory grind and set because this grinding is changing the geometry of the already finicky blade. And, it will do nothing to improve a blade that was just generally running badly or running badly for a specific reason like hitting a rock or metal (all of these problem blades get sent out for a full resharpening). It will, however, make a blade that was running well continue to run well and make flat, straight cuts for much longer.

Generally, it seems to work out that I touch up a blade with the sander a time or two and then send it out for full service or, for some of them, they keep working great and I keep sharpening them with the sander until they break. For all of the others, I hit something along the way (dirt, rocks, concrete, nails, hooks, cable, wire, screw-eyes, barbed wire, fence posts, screws, license plates, horseshoes, railroad spikes, chain, conduit, hangers) that either destroys the blade or dulls it enough that it needs a full regrind.

Even if I don’t use this method all of the time, it is nice to have another option to get back to cutting. If nothing else, I personally love the comfort of knowing that when I get down to my last new blade (and forgot for the second week in a row to order new ones) that I won’t be stuck cutting wavy lumber.

My First (and Maybe Last) Turning Job

Believe it or not, until recently I had never done any turnings. I have been messing with wood for a solid twenty years and never once have I even turned on a lathe. I’ve seen Norm do it a bazillion times on “The New Yankee Workshop” and listened to plenty of other woodworkers tell me about their turning escapades, but I never felt inclined to do it myself. I guess it’s because I am not attracted to work that has turnings in it, so they rarely end up in pieces that I am building and if they do, I pay someone else to do them.

It wasn’t by my choosing, but I did agree to build a bench with multiple turnings after my customer changed her mind on what she wanted. She showed me a picture from Sawkille.com of their “Tall Rabbit” bench and asked if I could make one like it for her with a variation on the length. Since I already had her deposit on the previous project, I didn’t want to say no and send back the money, so I said yes. I looked at it this way, if I consider myself a real woodworker and I am interested in spreading real-world useable woodworking knowledge, then it can’t hurt for me to have more knowledge myself. After all, was it possible that I would consider myself a real woodworker and die one day never having done a single turning? Sounded pretty hypocritical to me.

First off, let me say that the work from the kids at Sawkille is very nice, and though I don’t know them from Adam, I do appreciate the attention to design details that show in their work. I spent a lot of time messing with small details and proportions, and there is no doubt in my mind that they have spent exponentially more time on those same details and slight variations than I did.

This "Tall Rabbit" bench from Sawkille.com is what started my career as a woodturner.

This “Tall Rabbit” bench from Sawkille.com is what started my career as a woodturner.

The picture above is in black, but my customer saw some other variations and decided to go with bleached maple, and though it didn’t seem necessary on maple, bleaching gave the wood a very different look. The maple went from a light yellow-white to bone white with a couple of applications of two-part wood bleach. That part was as simple as could be – the actual turning was not.

Actually, I take that back. The short turnings weren’t too bad. After I turned the first couple and started to get a feel for it, the next 17 went pretty fast and came out nice. I got my time down to about 15 minutes each, which didn’t set any speed records, but it was a pace I could live with. If I did them all at that rate, I could turn all of the pieces in about 6 or 7 hours, which sounded like a fine day of work.

As you might have imagined, I wouldn’t have much to talk about if it all went down like that.

My troubles started when I stepped up to the legs and long stretchers. All of those are in the 24″ range, and about three times as long as the easy-peasy pieces. Out near the ends, where everything is solid, the work went according to plan, but in the middle, I would simply say that it did NOT. No matter how I attacked the middle, whether it be with a light touch or a hard push or maybe a quick jab or a different angle or a different speed or perhaps standing on a different foot or even just squinting a bit more, nothing improved. The piece of maple just jumped and kicked like a bucking bull, and I couldn’t stop it.

Even though I knew my problems were the result of the longer pieces, I imagined that a better turner (or at least someone who had turned at least once before in their life) could overcome the bounciness with better technique. I kept trying different lathe tools and worked slowly to get the pieces as good as possible, and while the overall shape was acceptable, the surface was not. It was nubby, like off-road truck tires, and there were plenty of spots were the wood was just ripped instead of cut. To finish up, I finally dumped the lathe tools and grabbed the sandpaper. I decided to take full advantage of the easy sanding on the lathe and let the paper do the work. Of course, it took awhile, but it was the only way I could come up with to overcome the bouncing spindle syndrome.

After I had a few of the long turnings done, I talked/complained to random shop patrons about my lathe fun and one of them mentioned using a rasp. Apparently, he had more turning knowledge than me (I think everyone does), and he had used the rasp a lot. It made good sense – a rasp is really just super-aggressive sandpaper. Plus, by holding the rasp more parallel to the piece than perpendicular, the rigid flat shape worked great to form the gradual curves with no humps. It wouldn’t have worked so well on intricate turnings, but it worked great in this case.

This is my version of the "Tall Rabbit" bench in bleached maple.

This is my version of the “Tall Rabbit” bench in bleached maple.

After finishing this project, I have a new respect for wood turners and turning. After all, my turnings were simple and still provided quite the challenge. When I think about some of the turnings I have seen, especially in other works, like large hollow vessels, and I consider all of the issues that the turner might face in a project like that, it really makes me appreciate the craft of it. And, though I may never do another turned project in my life, I am glad I gave this one a go.

 

General Tools MMD8P Moisture Meter Is Good On The Outside

The General MMD8P features a bright OLED display, built-in species correction, displays ambient temperature and humidity, and stores multiple readings.

The General MMD8P features a bright OLED display, built-in species correction, displays ambient temperature and humidity, and stores multiple readings.

When the General Tools & Instruments MMD8P moisture meter ($199) showed up to be reviewed, I was excited. I have moisture issues with wood – it seems like it’s always too wet to use and I don’t want to wait. Waiting takes all the fun out of opening up a log, and the longer I have to wait for wood to dry, the less of it I can sell. That is where the ol’ moisture meter comes into play. Much better than just guessing how wet the wood is, a moisture meter should tell me exactly how wet the wood is. It sounds simple enough, just put the meter on the wood or at most push two pins into the wood and take a reading, but it isn’t always that simple.

There are a range of moisture meters out there and they don’t all work the same and they don’t all read the same. I was hoping that the MMD8P from General that just showed up would be the meter of my dreams and for once make me feel confident that I knew just how wet my wood was. And it appeared that is just might.

Though I wasn’t impressed with the light, toy-like feel of the unit, it has more buttons and obviously, more features than I am used to in a moisture meter. It shows the relative humidity and temperature of the environment, which is pretty cool and has a menu for selecting different wood species, which is also cool. My first moisture meter (that I still own) has paper charts for species and temperature adjustment. I don’t bother with the charts, but I will gladly allow the meter to make the adjustments for me, and the General MMD8P does just that.

The first thing I did was play with the species correction. The interface, while obviously not from the great designers at Apple, worked fine and I was able to get to the species I wanted after a quick perusal of the owner’s manual. There are more than enough species to choose from and they are accessible by just pushing the up or down arrows until the desired species appears. It took only a few seconds to quickly flip through the alphabetical list, pick a species, and start jamming the pins into some boards.

A notable difference between this meter and other pin meters that I have used is the thickness of the pins. These are stout, less like pins and more like cones. My first thought was, “Now, these pins won’t break. Finally, pins that won’t break.” They are built like a tank compared to the pins on my Delmhorst (which often break), but after using them, I am not sure that it’s an advantage. I felt like the pins didn’t penetrate very deeply, which made my readings feel even more like surface readings instead of core readings. It also seemed like the pins wanted to eject themselves from the wood, and any difference in pressure while taking a reading resulted in a variance on the readout. If I pushed hard, the reading might be 9% and when I let up a little, the reading could be 12%. Unfortunately, there is no way to know which of those numbers is accurate. In my head I want it to be the drier number, but my heart knows it’s the wetter number, or even worse.

The display on this unit, which is touted as a major selling feature is big and bright and can be configured to display critical information in a few different ways, though I imagine that most users will pick one option and just stick with it (most likely the one that shows all of the information and not a truncated selection). I chose a display option which shows the moisture content reading very large, which seems to just make sense. After all, that’s what it’s for.

I moved around my shop from board to board checking to see how it worked and finding the moisture content of random boards – most of which were around 10%. That is fine if it is accurate, but at the same time very disheartening, and here is why, in the form of a little more background.

As I mentioned, I have a moisture meter, a Delmhorst J-lite, which was the first meter that I purchased. It is a pin-type meter, just like the General MMD8P and it always reads 9-10% or drier. Maybe not always, but it feels like always. I think it is a lazy meter and doesn’t try very hard. It says in a very monotone and cubical job sort of way, “10% boss. Next reading, 10%. The wood that you cut just a few weeks ago, 10%.” If it doesn’t read 10%, it will only read lower (even painfully low), unless I just cut the wood, where it may possibly read higher. I was so sure that the meter wasn’t working properly that I called Delmhorst. Officially, it checked out OK, but I still don’t trust it.

Since then, when I really check for moisture I like to use a Wagner MMC220 pinless meter, which takes readings 3/4″ deep using electromagnetic waves. The numbers go up and down like I expect in different woods and even in different spots on the same board. It will read 10% too, but it can do 9% and 6% and even 13%. Heck, sometimes it even does 17% (crazy, I know). I am still not sure of its absolute accuracy, but at least there appears to be movement in the numbers, and in a logical fashion – wood that is newly cut is wetter than wood that has been on sticks for a while. It will even read accurately on rough cut wood and won’t leave holes when you are checking surfaced lumber or finished projects.

So, back to my review.

I used the General MMD8P meter, and seemed to get the usual 10%ish measurement. I was testing wood that had been dried and had been in the shop awhile, so 10% or somewhere from 9-11% made sense. Then I tried an 8/4 chunk of walnut that I had cut only two weeks earlier. Funny enough, I didn’t get 10% like I expected, but I apparently pushed the meter a bit and got it to go to 13%, which at least told me it was wetter than normal (for reference, it should have read off of the scale, or at lease 30%). I thought, “Here we go again – another ten percenter!”

Now it was officially time to get to the bottom of this, once and for all. This new meter has the right look, it has all the extra buttons, it has a fancy display, but why must it always read 10%. I knew the walnut that I tested was soaking wet on the inside. Sure, the surface was perhaps 10%, but if I was strong enough, I guarantee I could ring water out of the middle of that board. I grabbed the $8 per board foot wood and threw it on my chop saw to expose some of the wood in the middle and took some new readings.

The very center was very wet and read as very wet, above 40%. As I moved towards the outside of the board it got drier, and in logical increments, until the outside reading of, you guessed it, 10%. That was good news. At least this meter had the potential to read something other than 10%, and it seemed to be accurate.

I took it with me to check on the kiln progress and went through the same process with 8/4 walnut in the kiln that was nearly dry. The shells were reading dry, around 6-8%, so I trimmed an end to test the inside. The General MMD8P meter did a good job of showing me the moisture content in the middle of the board and the moisture gradient as I moved towards the outside, just like it did in the shop. The numbers read as I would expect for how long the wood was in the kiln with a high number of 13%, and did a good job of telling me that the inside was still a little wet. So far, so good, for a pin-type meter.

I continued using the General MMD8P meter for the next few weeks. If I found myself wondering about the moisture content of a piece of wood, I checked it with the meter. It turns out that it isn’t just a ten percenter. In the shop, I got a full range of readings, and in a logical fashion. Shells were drier and when I cut into boards, the centers were wetter. The drier shells even showed a wide range of readings, again, all that seemed accurate.

The only problem is that I had to cut into the board to get an accurate reading. I know (and everyone else reading this knows) that the outside is drier and probably around 10%, but I don’t need a meter for that. I need to know the moisture content inside the wood and therefore, the overall moisture content of the wood. I need to know if the wood is still shrinking and how much shrinking it has left inside it. This is especially true in a species like white oak, for example, that doesn’t give up water and can be completely wet in the middle for a long time, even when the shell reads as dry.

The question that was continually in my head as I was reviewing this meter was, “Why would I use a pin-type meter that punches holes in the wood and only gives me a reading near the surface?” Unfortunately, the answer is I wouldn’t. No matter how bright the display, no matter how big the numbers, no matter how many corrections are built-in, no matter how many readings it can store, I wouldn’t choose a pin-type meter and I wouldn’t recommend one, not even at half of the price of a pinless meter. I think the General MMD8P meter is good for a pin-type meter with all of the controls that I could ask for and more, but it just doesn’t do the job that a pinless meter, with quick, accurate and deeper readings, can do.