Archive | Sawmilling RSS for this section

Visiting Mueller Brothers Timber

I love visiting Mueller Brothers Timber in Old Monroe. It just feels right to me. I like the the guys that run the place and I like that it feels like I’m out in the country, even though I’m less than thirty minutes away from the shop. I visit there somewhat regularly just to see what is going on, look at logs and to purchase lumber. They run a big operation that I have written about before (click here to read more), but this time I decided to shoot a little video while I was there.

My main reason for visiting was to purchase some hard maple lumber for an upcoming project, since I don’t get hard maple logs, and therefore, hard maple lumber very often. While I was waiting for my lumber to be pulled, I took a look around the log yard to see if anything caught my eye (I don’t purchase logs very often – but I can be persuaded). I’m always amazed by the amount of logs that they have and this time they had even more than normal. I know I love to look around their sawmill and I thought you might too. Check out the video below to go on a quick tour with me.

Some quick notes:

The lumber bundles I am looking at are dry and available for sale, but they only sell by the bundle (usually in the 300+ bf. range). They move a lot of product and don’t sell in smaller retail amounts.

I mention cutting maple logs in the winter, which is desirable because the white (sap) wood of maple logs discolors and stains quickly and easily in warm weather. It is better to cut white woods in cooler weather because they decay or discolor more slowly.

I passed over the double-trunk white oak because I have a lot of white oak slabs and white oak is difficult to dry, especially when cut extra thick. Water doesn’t move readily in or out of white oak which makes the drying very slow and any attempt to speed the drying usually ends with the lumber splitting. Thick white oak can be dried effectively, just not quickly.

Don’t Forget the Chainsaw (mill)

I started milling lumber about 25 years ago with a chainsaw mill, which is just a chainsaw with an attachment to control the depth of cut. The simple device allowed me to consistently cut accurate lumber with a minimal arsenal of equipment. It was a great way for a guy who knew nothing about trees or logs or sawmilling to learn about producing lumber. And, even today, I still use a chainsaw mill (Lucas mill) to cut the live edge slabs which we sell at WunderWoods.

Customers are regularly impressed with the quality of the cut from the chainsaw mill, imagining that the chainsaw will necessarily make a terrible cut with a nasty surface finish, which it does not. As a matter of fact, the quality of the cut from a chainsaw mill is better than the bandsaw – it’s very flat and absent of dips and doodles (scientific term) associated with thin bandsaw blades. Don’t get me wrong, bandsaws can and do, cut just as well, but when they start to get dull or otherwise less than perfect, they will cut anything but flat. A chainsaw cut will remain flat as the chain dulls, it will just cut slower.

A chainsaw mill is commonly referred to as an “Alaskan mill” because of the brand name “Alaskan mill” attachment made by Grandberg International, the same way you might call any facial tissue a Kleenex, but it doesn’t need to be this exact type. As far as I am concerned, any mill which uses a chainsaw chain and bar is a chainsaw mill, no matter the setup.

This photo from Grandberg International shows their Alaskan mill attachment.

The Alaskan mill is a simple metal frame, which attaches to the chainsaw bar and can be adjusted to change the depth of cut. It is so simple, in fact, that you could easily build one yourself. They have never been too expensive, so I think most people just opt to buy one. You have to set up two rails (many use a ladder) on top of the log to guide the first cut, but after that the Alaskan mill just rides on the previous cut. I am a fan of the Alaskan mill for its simplicity, and I have a warm place in my heart because it was my first mill. If you didn’t own a chainsaw and decided that you wanted to cut some lumber, you could be making your own lumber for about $500, for a small chainsaw and the Alaskan mill attachment.

I started with the Alaskan mill after reading an article about a father and son using one to cut logs in the woods. I thought it would be cool to cut my own lumber with a chainsaw, and I didn’t want to invest too much in the beginning because I didn’t have a source of logs. Plus, I didn’t own any land, wasn’t friends with any tree service guys and really had never even used a chainsaw before, so I wasn’t sure if it would take. The Alaskan mill promised me the ability to cut lumber anywhere and be able to do it with no heavy equipment – a small pickup truck was more than enough to get milling.

The Alaskan mill works just as advertised, but understand that it is not a production machine. The operator is the sole source of power, and as such, it isn’t an easy row to hoe. It would take me most of the day, by myself, to load up equipment, travel, set-up, mill one 20″ diameter x 8′ log, clean-up, load up equipment and lumber, and travel back home. That was fine with me at the time because I was young and I was tickled to end the day with more than 100 board feet of hardwood lumber. Using my simple logic, my equipment would be paid for in just a couple of logs.

Needless to say, this milling thing did take, and I kept on finding more logs and milling them. It didn’t take long for me to feel like I needed more production, so I moved up to a Lucas mill, but funny enough, not with a chainsaw slabbing attachment. I bought it only with the circular saw setup, which appeared to cut much faster. I then moved onto a bandsaw mill, then to a large circular mill, then back to a bandsaw mill, and only then back to the chainsaw mill attachment for the Lucas mill.

Scott Wunder (a long time ago) with his new Lucas mill, just getting it set up for the first time.

I always liked the Lucas mill and once wide, live-edge slabs started coming into style, it just made sense to use the Lucas with the chainsaw slabbing attachment to cut big logs. The mill I use now (a bigger Lucas mill) is a major upgrade to pushing a chainsaw through a log and really makes the process more enjoyable. I still have the noise of the engine and need to sharpen the saw quite often, but the sawdust and fumes aren’t directly in my face and I don’t have to work so hard to push the saw through the cut. The hardest part now is moving the slabs out of the way, since the Lucas mill can cut up to 60″ wide and they get quite heavy.

This Siberian elm slab maxed out the Lucas mill.

Most white pine logs are not as wide as this one, which was also cut on the Lucas mill.

This sycamore log is a perfect candidate for the Lucas chainsaw mill.

I was prompted to write this because even though I have upgraded to the Lucas mill for my sawmilling, I still do a lot of work with a chainsaw, and I want to remind or encourage everyone to not forget about their chainsaw as a means of milling. Don’t think that you need a “sawmill” to produce high-quality lumber or that if you have a “sawmill” that you no longer need your chainsaw. You won’t get dazzling production numbers, but you can still be milling at almost any time with just a chainsaw. I am reminded of this all of the time when I see posts from others of the big and beautiful wood they have cut, just by taking their chainsaw mill to the tree.

Even if I am not using it for the actual milling, there are plenty of times where the chainsaw still comes into play, whether freehand or on some type of mill, and I am still amazed by the simplicity of it all. I use the chainsaw to rough mill mantels which we haul out of tough locations by hand and to cut large logs into quarters for further processing on the sawmill.

I use my chainsaw to get big logs cut into manageable pieces.

These white oak quarters are now ready to be milled into quartersawn lumber after being cut lengthwise with a chainsaw by hand.

I also use a chainsaw by hand to rough mill logs in tough spots, like this soon-to-be elm mantel.

 

Every time I do some sort of work with the chainsaw, especially if it is part of the milling process, I always think back to my early days and appreciate what it can do. I think I really like the idea of knowing that if I needed to, maybe if I was stranded on an island full of large trees (and plenty of gas), I could mill everything I needed with just a chainsaw – maybe one with an attachment, but still, just a chainsaw.

Feel free to send me a photo of your chainsaw milling, and I will be glad to post it here with a link. I am sure everyone would love to see what is possible with a chainsaw/chainsaw mill.

How to Fold Up a Bandsaw Blade

Whenever I put a new blade on my sawmill, I fold up the old one to send it out for sharpening. I don’t find the process as awesome as I used to, but it still seems to intrigue others that haven’t seen me do it before. And, I must admit, when I know someone is watching that hasn’t seen me fold up a bandsaw blade before, I do it extra fast and super snappy to make it seem even more dazzling. With a quick flick of my wrists, the 50″ diameter loop of bandsaw blade is reduced to three loops at just 17″, making it easier to handle and ship out.

I learned how to coil a bandsaw blade like this pre-YouTube and over the phone from the kids at Wood-Mizer, who supply and sharpen my blades. It took a few tries to do it the first time and many more to get good at it, but I figured if I could learn it over the phone then I could certainly show others how to do it with visuals. The good news is that like learning to ride a bike, once you get it, you’ve got it.

It all starts with a pair of gloves and holding the blade with the teeth facing up.

To prepare, put on some gloves (without holes). Start by holding the blade with each of your hands on the outside of the blade, away from your body and parallel to the ground with the teeth facing up. Imagine that you are holding out a large basketball hoop in front of you waiting for someone else to take a shot. From there, whip the portion of the blade furthest from you towards the ground and just as the blade nears the ground give it a quick jerk up, with a snap. This motion will make the blade start to fold in half, with the teeth going away from you. At the same time that the blade starts to fold in half, simply twist both of your wrists towards the inside of the loop. If your timing is right, you will get to a certain point where the blade no longer wants to fight you and then it will just spring into three loops.

When first learning to coil a bandsaw blade, you can cheat by using the ground to help you get started.

When you are first learning this technique you may find it helpful to get a feel for it by cheating a bit. Start just as described above while standing on carpeting or grass or some other surface that is soft and will grab the teeth of the saw blade (I show it in the photos using a piece of lumber). Now, instead of whipping the blade towards the ground, just drop the end furthest away from you to the ground, so that the blade is now perpendicular to the ground. Use the soft and grabby surface to snag the teeth as you start to lift and push the blade up an away from you. Instead of getting the blade to fold in half with a whip motion, you are now going to get it to fold by pushing against the soft floor. As the blade starts to fold in half, with the teeth away from you, roll your wrists to the inside of the loop, just like described above. Using this method, you will be able to feel the exact point where the blade stops fighting you and happily coils into three loops. You should be able to get a feel for it after just a few times with this “cheating” method and then move on to the fancy, snappy method.

As the front of the blade starts to fold down and towards you, twist your wrists and push towards the inside of the the loop.

 

When your hands move to the inside of the loop, the back of the blade (closest to you) will curve down.

 

After a certain point the blade will jump into three loops and stay there. Now you’ve got it!

 

How to Stop End Checking in Lumber

Lumber is stacked on sticks like this to allow air flow for drying.

End checks are a common problem when drying wood. Sometimes they aren’t too destructive and don’t travel too far, but other times they make the end of the lumber completely unusable or make a nice wide board into two not-so-wide boards. These cracks form on the ends of lumber because the ends are drying out faster and shrinking more than the middle. This happens because water can easily and quickly escape out the end, which is the same way it came in, but water trapped in the middle must travel out sideways to escape, which is a much trickier maneuver.

The secret to keeping lumber from checking on the ends is simple and logical – force the ends to dry out at the same speed as the rest of the board, meaning slow down the drying on the ends. Unfortunately, there is no single, 100% effective, way to do this.

The default method for beginners is to paint the ends with latex paint. Latex paint will not stop end checking because it it just too permeable. It will make you feel good, like you are doing something useful, but that’s about it.

Beyond latex paint is wax and unlike latex paint, wax is waterproof. If applied in a thick cohesive film, wax forms a perfect barrier to keep water from moving out of the end of a board. The biggest problem with wax is application. It is just hard to get hot wax on to the end of a lot of lumber in a timely fashion.

Anchorseal is an industry standard for green wood sealing of logs and lumber. (Click on the photo to visit UC Coatings website for Anchorseal)

The application issue has been addressed by the kids at UC Coatings, who make a product called Anchorseal. Anchorseal is a wax and water emulsion made exclusively for coating the ends of logs and lumber to help prevent end checking. Anchorseal works just as stated, but it isn’t perfect.

First, Anchorseal isn’t cheap. A five gallon bucket goes for about $95. It costs enough that I thoroughly consider whether the wood deserves it. I usually save it for only the best lumber and the species most prone to checking, like white oak. Second, it still takes time to apply, and it is pretty messy. I know several guys that won’t use it in their operations because it gets on the floor and makes everything so slippery that it can be difficult to stand up. Third, using Anchorseal doesn’t guarantee that your wood won’t split. While it will greatly reduce the overall number of end checks, it isn’t uncommon to still get one or two big checks in wide boards. Many pieces of lumber have flaws in them and will split during the drying process no matter how much you try to stop them. Fourth, it must be applied to freshly sawn lumber before the end checks have started to develop for maximum effectiveness.

You can tell from my four points above that I don’t use Anchorseal very often. But, there are places that I will use it, and one is on high-quality, especially thick, flat-sawn white oak. Again, it may not stop all end checking, but it is a great tool to help prevent much of it. On many other species, like poplar, maple, and even walnut, I feel like I usually get by with minimal losses not using Anchorseal. It should be noted that my customers are usually shopping for small quantities of lumber, so they can decide on a board by board basis if an end check is problematic for them. For operations sending out large amounts of lumber to customers that are not picking through each board, using Anchorseal makes the most sense to help produce the greatest amount of useable lumber out of each bunk. At the very least, sealing the ends of the lumber lets your customer know that you did try to prevent end checking.

Fluted sticks are commonly used in the industry to promote drying and reduce sticker stain, but do nothing to reduce end checks.

My greatest gains fighting off end checking have occurred in my sticker selection and placement. While many strides have been made in the industry to produce fluted sticks that reduce sticker stain, very few people have given much thought to using stacking sticks to help reduce end checking.

Awhile back, while at a friend’s sawmill, he casually mentioned how he noticed that lumber will split on the ends, back to the first stick. He was mad that his guys where producing lumber piles that weren’t so neatly stacked, but I focused on the end checking. After that, I paid more attention to my own stacking and changed how I stacked lumber.

Place wide, solid sticks on the very end of lumber stacks to reduce end checking.

The main difference was that I started using the sticks on the ends of the lumber to reduce end checking. I focused on getting the sticks out to the end of the lumber, and I also made sure the end sticks were solid sticks, which help hold in moisture, even on sticker stain prone woods like maple. Since the ends dry out quickly, they don’t sticker stain, and even if they did the loss on the end of the lumber would be minimal. Beyond using solid sticks, I also use wider sticks on the ends, up to 3″ wide. The extra width helps hold in even more moisture and still doesn’t risk staining the ends.

In my opinion, focusing on placing wide, solid sticks at the ends of the boards is as effective as end sealing, especially in relation to cost and time savings. Again, this isn’t a perfect method, but you would be amazed at how well it works to reduce end checking. And, if you have some especially prized lumber, you can rest easy knowing that you can always add AnchorSeal to the mix to double your chances of check-free lumber.

 

Why Not Mill Pin Oak?

On a regular basis, probably at least once a week, someone contacts me looking to have a pin oak milled into lumber. They are excited because they finally got their hands on a truly giant specimen of a tree, and even though it is just a red oak, they are excited to get to work with a hardwood at a reasonable price. Unfortunately, I have to be the bearer of not-so-good news and try to get them to reconsider.

This pin oak is less than 20 years old and is already over 15″ in diameter.

As I mentioned, pin oak is in the red oak family, but that is about the only relationship it has to any decent red oak lumber. Pin oak is not milled and sold commercially under the name red oak, and as far as I know, is only used for low-grade products like pallets and blocking, where the only requirement is that it be made of wood that will stay together. And funny enough, pin oak often falls short of even that low requirement.

The problem is that many pin oak trees suffer from ring shake, which is where the rings of the tree peel apart like an onion, making that section of lumber nearly unusable. The beauty of ring shake is that it can’t be seen from the outside of the log and it won’t always be visible even early in the milling process. Sometimes, it won’t be until the lumber has been fully processed and dried for it to start falling apart. Needless to say this is frustrating, especially if you are counting on that lumber for a project and then end up with no wood to work. Even if the ring shake isn’t bad enough to make the lumber actually break, it very often leaves at least one fancy break line somewhere in a board where you would rather not have it. Again, super frustrating.

So, let’s say you find a pin oak that is solid, with no ring shake, then it is all clear sailing, right? Far from it. You may have lumber, but you probably don’t have great lumber. One of the main attractions for pin oak is the giant size and the promise of a never-ending bunk of lumber comprised of super-wide boards. This, you may indeed have, but it comes at a cost. The cost is that all of the super-wide lumber will have super-wide growth rings, rings that may be up to 1/2″ or more in width. Because the tree grows so fast, putting on up to 1″ in diameter per year, the logs get big in a hurry too. It isn’t uncommon for a 36″ diameter log to have only started growing 45 years ago. It was planted because the trees grow to a large, stately appearance quickly, and that means big, wide growth rings.

Big growth rings mean a coarse textured wood, no matter how you cut it. Whether flatsawn or quartersawn, red oak is already known for its open, in-your-face, grain, and pin oak is ten times worse. Imagine an 8″ wide flat sawn board that may only show a couple of annual rings on the face. It looks more like the cheapest of spiral cut plywood for sheathing the side of your house, instead of quality hardwood lumber for building fine furniture. That same 8″ wide board, if quartersawn, will probably show about 20-25 rings, where a high quality white oak board will show 60-80 rings. The difference is night and day, with the higher growth ring count looking much more refined and not so clunky.

Even if the wood stayed together and for some reason the growth rings weren’t so wide, pin oak would still be far from a great hardwood. The lumber typically also sports bad color, bad smell (commonly referred to as “piss” oak by local tree guys), and many more knots than are outwardly apparent. Since the trees are usually open grown and well pruned, the always straight, always perfectly upright trunks appear to contain up to 30′-40′ of clear lumber. The truth is that the trunks typically contain only 8′ of clear lumber near the ground, with the remainder being full of knots from previously trimmed branches.

Overall, I have nothing good to say about pin oaks, except that they grow big, tall and straight. And, while it may be possible to mill pin oak lumber that meets some minimum requirements (like staying together), the best pin oak is still easily surpassed in quality by almost any other reputable wood. Just know, if you are thinking about paying someone to mill a pin oak tree for you, that I wouldn’t even mill a pin oak if it magically fell on my sawmill. I would take the extra time to get it out of the way, so I could mill something better. It’s just not worth it. Move on.

Lucas Sawmill Is Small But Mighty


Scott Wunder of WunderWoods laying on giant white pine live natural edge milling

My sawmilling adventures began with an Alaskan chainsaw mill, which is just an attachment for a chainsaw to allow it to repeatedly cut a log lengthwise into lumber. It wasn’t anything fancy, and while it produced fine lumber, it was painfully slow to use. It didn’t take too many hours of me directly sucking in sawdust and fumes, while sweating my butt off, to start shopping for a more capable sawmill.

When I started my search, I considered bandsaws made by companies smaller than Wood-Mizer or TimberKing or Baker in a quest to also find smaller prices. While searching, I found several mills that looked suitable in the $5,000-$10,000 range, and I also came across a new “swing mill” from Australia called a Lucas mill.

The bandsaws looked to be a good choice as far as production went, but I didn’t have any way to move logs at the time, so the Lucas won out. It’s ability to easily break down and set up on site, while fitting in the bed of a pickup truck made it the clear choice, especially for larger logs. I say clear choice, but it wasn’t an easy choice. I didn’t like that the basic mill, fitted with a circular blade, was limited to 6″ or 8″ wide lumber without the optional slabbing bar attachment. And, my biggest fear was that this new mill from Australia, that I knew nothing about, might not be as good as it appeared in the videos.

Unfortunately, my fears were NOT immediately allayed. I went to pick up the more than $10,000 sawmill at the shipping terminal, and I couldn’t help but feel like I way overpaid for the amount of merchandise I picked up (Did I mentioned that it fits in the bed of my pickup truck?). There was only a sawhead, two long rails, and a few other miscellaneous metal parts that formed the frame ends. Besides that, the kit included a sharpener and some other odds and ends, but none of it added up to very much. I started doing the cost per piece arithmetic in my head, and it wasn’t looking good.

Here I am reading directions and setting up the 6" Lucas mill for the first time.

Here I am reading directions and setting up the 6″ Lucas mill for the first time.

Regardless of my buyer’s remorse, I was tickled to have a “real” sawmill and set it up in my back yard the very first chance I got. After just a short time reviewing the directions, I had the sawmill set up and ready to cut. Even for someone who had never set one up, the Lucas went together fast. It was then that I realized what I had paid for. I didn’t pay for lots and lots of parts and extra bulk. I paid for an impressively designed machine, with an amazingly small stature, than can tackle the biggest logs. I paid for all of the research and design that went into the mill by the Lucas boys, and I paid to not lug around thousands of extra pounds, and I paid for everything to go together with minimal effort and a minimal number of steps. I got all of that and more.

From a design standpoint, I can confidently say that every part of the Lucas mill is well-planned and simplified beyond belief. The only mechanisms that I have ever had a problem with are the winches that raise and lower the ends of the long rails. They work perfectly fine and they are quite smooth, but they can be dangerous. When fully loaded with weight, it is possible to release the winch and lose control, resulting in a violently swinging handle that can smash your arm and allow the sawhead to come crashing down. I know from personal experience, as this has happened to me more than once, with the last instance leaving me at the hospital with a possible broken arm (luckily it was just a very bad contusion). If they were to ask, I would recommend that the winch system be built like the raising and lowering mechanism on my TimberKing 1220 manual mill, which magically is able to easily raise and lower the sawhead with complete control and without the possibility of having a disastrous crash. I have no idea how it works, but it smoothly operates the sawhead with a very heavy 15 hp electric motor attached to it like it isn’t there at all.

Even logs this size, like the one I milled for Martin Goebel of Goebel and Co. Furniture can be milled with the Lucas mill.

Even logs this size, like the one I milled for Martin Goebel of Goebel and Co. Furniture can be milled with the Lucas mill.

Now that you know to watch your arm and to be careful when lowering the sawhead on the Lucas mill, I can continue telling you how wonderful the Lucas mill is. First off, realize that I bought a Lucas mill in 1995, so I have been using one for about 2o years now, and I still use it on a regular basis. It is a very versatile machine that can handle big logs with ease. I often get asked how big of a log I can handle, and with the Lucas mill in my corner, I can just answer, “Yes.”

Currently, I use the 8″ model, which means that with the 21″ diameter circular blade attached it can produce up to 8″ x 8″ dimensional lumber. I rarely cut 8″ x 8″, but the mill can easily be adjusted to cut any dimensions under 8″. I often cut 1″ and 2″ thick lumber by 8″ wide.

The Lucas mill is called a “swing” mill because the blade can flip or swing with the pull of a lever from the horizontal to vertical position and right back again. The cool part is that both of the cuts line up with each other and work in concert to produce accurate and straight, completely edged lumber without a dedicated edger or any extra handling. In contrast, to edge lumber on a bandsaw mill requires flitches (lumber with bark edges) to be stood up in the mill and cut one or two more times to produce lumber with four square edges.

In the 1990's, I used the 6" Lucas mill to produce lots of 1" thick, fully-edged lumber.

In the 1990’s, I used the 6″ Lucas mill to produce lots of 1″ thick, fully-edged lumber.

When cutting dimensional lumber I can easily work by myself making the vertical cut walking backward, then making the horizontal cut walking forward and finishing by sliding the cut board backward and out of the way. After a quick repositioning of the sawhead and a flip of the blade, I am back to cutting another piece of lumber. When cutting dimensional lumber like this I get in a rhythm–walk backward, flip blade, walk forward, slide board, move and flip blade, then repeat. The first cuts on the outside of the log are firewood, but after one pass across the top of the log and then dropping the mill to the next set of cuts, almost every pass produces an edged piece of lumber.

Scott Wunder of WunderWoods milling a large white oak slab on the Lucas mill for Martin Goebel of Goebel and Co. FurnitureWhen I first got my Lucas mill I used it with the circular blade most of the time. Everything I produced was fully edged. Big slabs weren’t in style, so I didn’t even own a slabber, let alone use one. Now things are different. Live edges are in and so are big slabs, so the slabber is on the mill most of the time. The slabber is an attachment that turns the sawhead into a giant 2o hp chainsaw mill, with a maximum cut of 64″ wide.

I use the Lucas mill with the slabber attachment to cut all of my big logs that will produce slabs for table tops. With the slabber attachment the Lucas is not fast, but it can cut much wider than my bandsaw mill (maximum cut of 29″ wide), and it doesn’t make sporadic wavy cuts like the bandsaw mill. Knowing that I won’t get a miscut on a high-priced piece of wood gives me a great piece of mind.

The Lucas mill is great at flattening live edge slabs too.

The Lucas mill is great at flattening live edge slabs too.

These days when the slabbing attachment isn’t on the mill, the circular blade is, but not for milling lumber. I have been using it to flatten my kiln-dried slabs, and as long as the blade is sharp, it works great. After I move the slab into position, I just skim the surface with the mill to remove the high spots. Next, I flip the slab, drop the mill a bit and skim the other side. The end result is a perfectly flat slab, ready for final planing. The kids at Lucas sell planing and sanding attachments, but I haven’t used or purchased either one since I finish almost all of the slabs with the power hand planer or wide-belt sander.

Every time I use the Lucas mill, I am reminded how well it works, from quickly setting it up to making small adjustments, everything is simple. And, I know when I show customers how capable it is, they are impressed that such a lightweight, easy-to-setup mill can do so much.

Note: While Lucas is more than welcome to pay me to endorse their mills, as of now they do not. This was written for educational purposes and to let others know how my slabs are produced.

 

Sharpen Your Bandsaw Blade on the Mill

Through the years I have dulled a lot of bandsaw blades on my sawmill, and for the longest time, I have struggled with keeping them sharp. I have tried multiple tools and methods to get this done, but only within the last year do I feel like I have found a good solution.

The problem starts with the bandsaw blade itself. It is a finicky conglomeration of bent teeth, cut from a thin piece of flexible steel that is somehow supposed to cut a straight line, not only from front to back, but also side to side, and if it isn’t well machined and sharp, there isn’t a snowball’s chance that this is going to happen.

Early in my career, when a new saw blade dulled and started to cut waves, I would try things like adding tension to the blade, slowing down my feed rate or even adjusting my blade guides. No matter what I tried, a dull blade would still make a wavy cut. However, if I used the exact same setup but installed a new blade, the cut would be perfect again. As a matter of fact, almost every other adjustment could be less than perfect and a sharp blade would still make a good cut. From 15 years of experience, it is clear that I need to keep my saw blade sharp and touch nothing else.

My standard course of action is to put on a new or newly sharpened blade from Wood-Mizer when my cut starts getting wavy. This is a great way to live. Nothing cuts like a brand new blade, and it feels like a treat to put one on. Even the resharpened blades cut great since they get a complete factory treatment, including cleaning and full tooth grinding and setting. I have always had great results from Wood-Mizer, and I highly recommend their new blades and resharpening service. (Disclaimer: I am not being paid by Wood-Mizer and Wood-Mizer doesn’t know I’m writing this post – they probably don’t even know I exist.)

The problem for me was that time in between cutting like new and cutting like crap. I would have a blade that was cutting great, but I could feel it pulling hard and on the verge of cutting poorly. I didn’t want to pull it off of the saw because it was running so well, but at the same time I knew my time was limited. If I could just get an edge back, I could keep cutting with the same blade and not have to mess with sending the blade off to be sharpened, and I would save $7 (by the way, I think $7 is a great price for the quality of service, but I would rather not spend it if I don’t have to). So, off I went, looking for a way to sharpen blades on my own.

In the past, I tried using a manual sharpener that came with my first bandsaw mill. It functioned like it was designed to, but the results weren’t great. Besides having to take the blade off of the mill and set it up in the sharpener, it used a stone that wore down quickly and wouldn’t maintain a flat, consistent face on the tooth (looking back, I probably should have tried some other stone options, but I didn’t).

Later, I tried a few other approaches. The first was using my chainsaw grinder, like the one below, which had a similar problem to the first grinder. The small stones would wear down quickly and the thin bandsaw blade would basically cut the stones in half.

This grinder is great for chainsaws, but not for bandsaw blades because the stones wear down too fast.

This grinder is great for chainsaws but not for bandsaw blades because the stones wear down too fast.

The next attempt used a sanding disc on a drill. I liked the idea of using sandpaper because it maintained a flat surface during grinding – it would wear down, but not change shape. This one showed potential, but it was incredibly hard to control because the spinning motion pulled the drill up and away from the blade.

I finally gave up, feeling like I had exhausted every option cheaper than buying a fully automatic grinder like the factory has, but I never gave up on the idea of sandpaper as a good abrasive that doesn’t change shape.

Up to that point, all of my attempts focused on sharpening the saw by grinding the front of the tooth. There was nothing else I could think of that would fit between the teeth and grind the front of them. But, then I thought about grinding the top of the teeth. This surface is easier to get to and taking material off of the top will still lead to a sharp point – it doesn’t really matter which face gets ground down.

I started off with my 3″ Porter-Cable belt sander just to try things out and it worked great. I could sand the top edge of the tooth with control and the speed was slow enough to not feel like I was burning the metal (which softens the teeth). The only problem was the weight of the belt sander, which might as well have been 1,000 lbs. because there was no way I could hold it to sharpen all of the teeth on the blade.

At the time I didn’t own a small belt sander, so I took a gamble and purchased a Porter-Cable 371 compact belt sander. I figured that even if it didn’t work for the blade sharpening I would at least have another tool in my woodworking arsenal and that there were going to be plenty of times when a small belt sander would come in handy. Finding other uses for the new sander hasn’t been much of an issue though, because it works great to sharpen blades, and it is always parked (plugged in) right next to my saw, ready for the next dull one to come along.

Using a small belt sander works great to touch up bandsaw blades.

Using a small belt sander works great to touch up bandsaw blades.

I simply leave the blade on the saw and grind just enough off of the top of each tooth to get the edge back. I use my free hand to steady the blade and to advance the saw to the next tooth. In a matter of just a few minutes I can be back to cutting, feeling like I have beat the system.

I use my left hand to stabilize the blade and to advance it to the next tooth.

I use my left hand to stabilize the blade and to advance it to the next tooth.

Now, there are limits to sharpening your saw like this. First off, no matter how good you get with the sander, the blade will not be as good as a new one or one that has had a full factory grind and set because this grinding is changing the geometry of the already finicky blade. And, it will do nothing to improve a blade that was just generally running badly or running badly for a specific reason like hitting a rock or metal (all of these problem blades get sent out for a full resharpening). It will, however, make a blade that was running well continue to run well and make flat, straight cuts for much longer.

Generally, it seems to work out that I touch up a blade with the sander a time or two and then send it out for full service or, for some of them, they keep working great and I keep sharpening them with the sander until they break. For all of the others, I hit something along the way (dirt, rocks, concrete, nails, hooks, cable, wire, screw-eyes, barbed wire, fence posts, screws, license plates, horseshoes, railroad spikes, chain, conduit, hangers) that either destroys the blade or dulls it enough that it needs a full regrind.

Even if I don’t use this method all of the time, it is nice to have another option to get back to cutting. If nothing else, I personally love the comfort of knowing that when I get down to my last new blade (and forgot for the second week in a row to order new ones) that I won’t be stuck cutting wavy lumber.

Grow Exhibit Opens at the St. Louis Science Center

The Exploradome (above) was deflated and removed to make way for the new Grow exhibit. Click on the photo to find out more about the now deflated Exploradome.

The Exploradome (above) was deflated and removed to make way for the new Grow exhibit. Click on the photo to find out more about the now deflated Exploradome.

If you have driven down Highway 40 in St. Louis recently, you may have noticed a new structure being erected next to the St. Louis Science Center where the “temporary” Exploradome once stood. After 16 years in service, the inflated building was past its prime and too expensive to operate, so it was replaced with a new, permanent agriculture exhibit called Grow.

The centerpiece of the exhibit is the new building that features massive bent laminated beams which create a beautiful swoosh of a roof. Just outside the entrance of the new building is a vermiculture display that I built for the exhibit. While it pales in comparison to the woodwork that went into making the building, I like to think it makes a nice little earth-friendly welcome mat for visitors.

The bent laminated beams that make the roof structure on the new Grow exhibit building are impressive.

The bent laminated beams that make the roof structure on the new Grow exhibit building are impressive.

The vermiculture unit, designed by Mark Cooley, uses worms to make compost. Built out of locally salvaged Eastern Red Cedar, the two-compartment structure is set up to have green waste loaded in the top and compost extracted from the bottom after the worms have done their job eating the contents. The two compartments, which are side by side, are divided by a wire mesh that allows the worms to move between compartments. This particular unit has glass panels to allow for viewing of the interior from the front of the display, though the glass is not required for use.

Just outside of the new building is the vermiculture unit where worms make green waste into compost.

Just outside of the new building is the vermiculture unit where worms make green waste into compost.

This project was a bit out of the norm for me since it was more carpentry than fine woodworking, but it was a fun change to build something that wasn’t so fussy. I had the most fun when I was able to find some logs in my shop already standing against the wall for the project. They were left over from another project, and I was able to just carry them to the sawmill and cut the parts I needed. I chuckled to myself while I was doing it because I have never just hand carried logs to the sawmill that were standing in the shop like sticks of lumber. It was only possible because cedar is lightweight and the logs were small, but I still had more than enough to make this project.

Cedar is lightweight, durable and cuts like butter.

Cedar is lightweight and durable. I already had these logs in the shop waiting to be milled.

Mermaid Lagoon driftwood sign WunderWoods

The vermiculture unit was a bit more fussy on measurements, but it reminded me of making this sign.

Cedar mills like butter on the sawmill, even when dry, and since it was going outside I didn’t need to do any extra drying. I was able to mill it, plane it and assemble it right away, which made it feel more like I was building a fort or a treehouse, especially since I never get to knock something out like that. It reminded me a lot of the Mermaid Lagoon sign I made for Mira a few years ago, since both went together expeditiously. There were a few critical measurements to maintain, like the size of the footprint, but everything else was somewhat negotiable as long as it looked and worked like Mark Cooley’s design.

The vermiculture unit is nestled in the Grow exhibit along a mulch path surrounded by plantings that are arranged like a garden or small farm field. Nearby are live chickens, two new tractors, a greenhouse and a dairy demonstration area. Inside the building are electronic, hands-on displays that focus more on the places that generate food, from the species of plants to different farm settings. Outside, on the North side of the building, are a couple of displays that focus on water, with a chance for the kids to interact with displays that are both hands-on and hands-wet.

The St. Louis Science Center and the new Grow exhibit are free to all visitors. It opens Monday-Saturday at 9:30 a.m. and Sunday at 11:00 a.m. The Science Center closes at 5:30 p.m. during peak summer hours (May 28-Sep. 5, 2016) and at 4:30 p.m. during off-peak hours.

 

Random Width Flooring: Efficient Use of a Valuable Resource

In the normal course of my business, I am sometimes asked to make flooring out of my customers’ logs. Because I mill the logs into random width boards, I would often get stuck with trying to determine the best width to make the flooring, knowing that no single width would have that great of a yield. No matter the width I chose, there would always be plenty of boards with lots of waste. If I chose 3″ wide flooring, I can guarantee you that an astonishing number of the rough cut boards would just happen to measure 8-3/4″ wide, which would yield two 3″ wide boards and one wide scrap piece, absolutely killing me.

This random width hickory floor was rough cut in 3", 4' and 5" widths. I made it from trees harvested on site at Tyson Research Center in Eureka, Missouri.

This random width hickory floor was rough cut in 3″, 4′ and 5″ widths. I made it from trees harvested on site at Tyson Research Center in Eureka, Missouri.

In the past, I have tried to decide the width ahead of milling the logs and pick out which cut was going to be flooring and which was going to be another product, like siding.  It seemed simple enough, if the board I was cutting was long and clear with no knot holes, I would cut siding, and if it was knotty and was going to produce only short pieces that were good, I would cut them for flooring. All I really had to do was sort the lumber into two piles while I was working. But, it wasn’t that easy.

Some logs would have a side that was good for producing siding, but the next side was only good for flooring. When I flipped the log over to a new side, my width was determined by how much I cut off of the last side, and it was always random. So, no matter what I did, even if I was cutting for a specific product, I would get stuck with lots of random width boards.

As I mentioned, wasting lumber kills me, and every time I ripped random-width boards down to some set width, leaving wide scraps on the floor, I thought about how to stop wasting so much wood – then it clicked. Many years ago, a friend of mine showed me a floor he made for his own house out of random width boards. As far as I know, he only did it because he thought it would look different and make his house have a special touch that would only come from someone who made their own flooring. His floor was white oak with tons of character, in three different widths. It was beautiful, and it seemed to me that I could use these random widths in some form to stop wasting wood.

I don’t remember a specific moment when I had the epiphany (though I am sure I must have had one), but I figured out that using just three widths, 3″, 4″, and 5″ would cover every width of board I could produce and always leave me with less than 1″ of waste per board.

Think about it. 3″, 4″, and 5″ wide, rough lumber is covered right off of the bat since they are already useable widths. After that is a 6″ wide board, which will just be ripped into two 3″ wide strips. A 7″ board gets ripped to a 3″ and a 4″ strip, while an 8″ board turns into two 4″ strips or a 5″ and a 3″, whichever is preferred. Any width of rough lumber over 6″ wide can be broken down in some way with just the three target widths of 3″, 4″ and 5″. By the way, these are the rough cut widths. The finished tongue and groove flooring will end up with a face about 1/2″ less in width.

This classroom at Tyson Research Center, features random width maple flooring, I also rough milled it in 3", 4" and 5" widths.

This classroom at Tyson Research Center, features random width maple flooring, I also rough milled it in 3″, 4″ and 5″ widths.

Random width flooring looks different, but not too different. At first glance, the viewer only notices the beautiful wood, and then after closer inspection notices the three widths, which lets them know subconsciously that the flooring is special. It stands out because it isn’t all one width like typical hardwood flooring, and most people have never seen or even thought of using random-width flooring. But, I say, “Don’t be scared of it.” It is different and not typical, but in a good way, especially when it comes to waste.

How Thick to Cut Lumber

One of the first things I needed to figure out when I started cutting rough lumber on a sawmill was what thickness to make it. I could generally determine if I wanted it to be thick or thin, but just how thick or thin? 4/4 lumber is 1″ thick, so it should be rough cut at 1″ thick, right? Not exactly. For hardwoods, the commercial target for 4/4 lumber is actually 1-1/8″, which allows enough margin to produce dried and planed lumber at a thickness of 13/16″ or 3/4″ (3/4″ is acceptable, but the extra 1/16″ of thickness in 13/16″ material allows room for additional planing or sanding after panels or doors are glued up).

The crazy thing is that back then I couldn’t find solid information on lumber thicknesses anywhere and when I referred to the NHLA (National Hardwood Lumber Association) guide, the thicknesses didn’t match up with what I was finding from hardwood producers.  The NHLA guide doesn’t include the bonus 1/8″ of thickness – 4/4 lumber, for example, is specified at a minimum of 1″.

In my experience, 4/4 hardwood lumber cut at 1″ is too thin to consistently produce flattened and planed lumber at 13/16″ thick and will even have trouble producing 3/4″ thick unless the boards are very flat. The only way 1″ thick rough-cut hardwood lumber can plane out completely to 13/16″ or 3/4″  thick is to skip the flattening and just plane the lumber. This will produce thicker finished lumber, but it won’t be flat and straight since the planer will simply follow the curves of any crooked boards. From a woodworkers perspective this is a horrible practice and makes woodworking much more difficult. For this reason, I cut my 4/4 hardwood lumber like all other quality producers at 1-1/8″ thick and don’t accept anything from other sawmills or wholesalers at 1″ thick.

Starting with the lumber measurement and adding 1/8″ for the final thickness is how all of the hardwood measurements go, with a target for 4/4 lumber at 1-1/8″, 5/4 lumber at 1-3/8″, 6/4 at 1-5/8″ and 8/4 at 2-1/8″. These are the commercially accepted numbers, and except for 8/4 lumber the ones that I shoot for. The problem with 8/4 lumber is that since there is more wood it shrinks more than thinner lumber and 2-1/8″ thick just isn’t enough thickness to flatten and plane lumber to consistently finish at 1-3/4″, which is the target for 8/4 lumber. When I flatten and plane batches of 8/4 lumber milled at 2-1/8″ thick it isn’t uncommon for half of the lumber to finish at 1-5/8″ thick instead of 1-3/4″.

Because I think 2-1/8″ is a little thin, I commonly cut 8/4 lumber at 2-3/8″ thick. 2-3/8″ thick is twice that of 4/4 lumber, plus the 1/8″ saw kerf that would have been between the two imaginary cuts. The extra thickness not only impresses the ladies, but it assures a final dried and planed thickness of at least 1-3/4″ and officially uses no extra wood when compared to cutting 4/4 lumber (to keep things simple, a friend of mine simply calls it “double four quarter” lumber). As I mentioned though, 8/4 is commercially sawn at 2-1/8″ thick, so if you cut it at that measurement it isn’t wrong, 2-3/8″ is just better for the end user (none of my customers have ever been upset that the wood is a little thicker).

The previous examples were for hardwoods, but softwoods, like white pine, can be cut thinner since they shrink less and dry straighter overall, plus softwoods are commonly used for construction purposes instead of furniture, which don’t need the extra thickness for secondary planing or sanding, so 3/4″ final thickness is common for 4/4 softwood lumber. For 4/4 white pine for example, I cut 1″ thick, which will finish at 3/4″. And, for cedar, which shrinks very little and is very straight and stable, I will go even thinner, down to 7/8″. In general though, softwoods are cut on the standard quarter scale with 4/4 lumber measuring 1″.

The scale below shows the target hardwood lumber thicknesses for commercially produced, rough-cut lumber and their planed thickness counterparts. These are the sizes you should expect to find when shopping for hardwoods.

Hardwood Lumber Measurements

Quarter-scale measurement    Rough cut thickness    Planed thickness
4/4                                                1-1/8″                            13/16″
5/4                                                1-3/8″                            1-1/16″
6/4                                                1-5/8″                            1-1/4″
8/4                                                2-1/8″ (or 2-3/8″*)         1-3/4″

*2-3/8″ is a better thickness to consistently finish at 1-3/4″ thick, but 2-1/8″ is the norm.