Woodworking With Gloves: Am I Crazy?
Before you answer that question, let’s discuss.
Everything I read regarding safety in the shop says don’t wear gloves when operating machinery. Gloves can get caught in moving parts and suck you in. It makes sense. Don’t wear loose clothing, tie back your hair and don’t wear gloves. But, I am not one to just let things go unquestioned. Are gloves in the shop really that dangerous?
I almost always wear gloves in the shop, even while operating machinery. They are tight-fitting cloth gloves with nitrile-dipped palms from Home Depot. I like them because they are inexpensive, fit great, aren’t too hot, and give me excellent grip. I especially like to wear them when I am using the jointer, but I find the grip to be helpful any time that I am pushing smooth-planed wood through a tool like the table saw.
I use the jointer (mine is 12″ wide) to flatten the wide face of all of my lumber before it goes through the thickness planer, leaving it flat and straight. On wider, longer and heavier boards it takes a lot of force to move them across the jointer. Often, I am really leaning into it and the gloves are the only way that I can get enough grip. I know push blocks are recommended, but they are slow and very cumbersome to use when you are faced with several days of jointing rough lumber.
On the table saw and router table, the enemy is smooth wood. I constantly envision myself losing my grip and pushing my hand right into the action. Guards, of course, would help, but we all know that there isn’t one on my table saw and there probably isn’t one on yours either. On the router table it is easier to cover the cutter and be productive, but I still want a good grip, so that I don’t jam my hand into the bit. I think gloves are the answer.
So, why are gloves dangerous? They are dangerous because if you accidentally touch that table saw blade, instead of just getting cut, you will get cut, sucked in, and cut some more. To that, I say, “Well, don’t touch the blade.” I have been doing this a long time and I still get a little nervous when my hand is getting in the vicinity of the blade. I pay attention, think about what could go wrong and try to avoid it. I always picture myself at my college bakery job at 3 a.m. making donuts. I am tired, the floor is covered with grease, my knees are locked and I am leaning forward over a boiling vat of death. But, no matter how tired I was, I knew that if I lost my balance and fell forward, I was going to catch myself on the side of the fryer and not in the bottom of the hot oil. The thought of my hand frying like a donut goes a long way to making me focus and so does the idea of sticking my hand in the table saw. Gloves aren’t an issue if you keep your hands out of the saw.
Now that I have tempted fate and thrown it out to the universe, let’s say my hand does go into the proverbial “fryer”. If I am wearing a glove, is my result guaranteed to be worse because of it? I have heard stories from friends of friends and distant acquaintances on the internet about how things were bad because of a glove. But, what about the times that an accident was averted because of gloves? It is certainly possible. Nobody is going to tell a story of how they didn’t put their hand in the saw because they had a firm grip and everything went smoothly. There is no gore there, no tale of doom to pass down from generation to generation.
With this in mind, I tried to be more scientific and find studies about gloves in the workplace. The one that I found to be the most relevant only asked questions of people who were injured on the job and whether they were wearing gloves or not. They really needed to ask glove wearers about specific times when the gloves either made their outcomes better or worse. But again, worse outcomes are going to get more airtime because you can’t identify when things went better or nothing went wrong.
For now, I am still wearing my gloves. They make me feel confident when I am close to the tools, and I think that goes a long way towards safety. In the meantime, I hope to find more scientific data and plan to do some tests by sticking gloves in the tools to see how things go. I just need to find some volunteers.
Let me know your thoughts and if you have any first-hand accounts.
Pattern Guides On The Table Saw: Fast In The Straightaways
I’ve never seen it done before or demonstrated on any woodworking shows, and this would be the last thing that I would come up with on my own. But, thanks to Don Snyder, a fellow St. Louis Woodworkers Guild member, I can now add using a pattern to cut pieces on the table saw to my playbook. It sounds simple, and it is, once you understand what is happening.
Don’s program was provocatively titled, “How to cut polygonal shapes.” I initially thought that there was going to be a lot of talk about angles – and there was. The information was “informative”, but seemed like something I could figure out on my own if I needed to. I could figure out the angles necessary for a 32-sided shape; but I was looking for a trick, something that I hadn’t seen before, and Don delivered.

This fence is for short pieces. Make sure the auxiliary fence is long enough to start and finish the cut with the pattern against the fence.
The reason for using a pattern on the table saw is to produce exact copies of shapes with multiple sides quickly, accurately and repeatedly. This is necessary for making more than one simple project or a lot of pieces for a complex project. Don got in deep, even showing how to use this method to make three-dimensional shapes like polyhedrons.
The first step it to make a pattern, a perfect pattern, of the shape that you would like to repeat. For this method, especially on the table saw, all the sides of the shape need to be straight lines. The table saw is not good at curves. The pattern is cut from 1/4″ thick material, which is easily worked and provides enough structure to run along a guide. MDF is fine for short runs. Plywood is more durable and a better pick for longevity. Solid wood is not a good pick because it is not dimensionally stable. Remember, accuracy is very important.

Top views of the pattern and an end view of the fence and blade show how the alignment of the three makes a perfect copy, one edge at a time.
The next step is to secure the pattern to the wood that will be your final piece (or, of course, a test piece). This can be done with nails, double-stick tape, spray adhesive, etc. as long as the pattern can later be removed and not damage your final piece. You want the pattern to stick firmly to the piece you are cutting. If not, the lumber could twist on the sawblade and cause a violent kickback (this is something you want to avoid).
All that is left to do is to make your auxiliary fence for the pattern to follow. This fence will attach to your regular fence and extend over the blade so that the outside edge of the fence is above and in line with the outside edge of the table saw blade. Set the blade to just clear the thickness of your final material and set the auxiliary fence about 1/16″ above the blade. The auxiliary fence should extend well beyond the front of the blade so that the pattern can engage the fence before the final material is cut (this is also for safety, as well as accuracy). The same is true on the back of the fence to allow for a safe finish on the cut.
To cut a piece like a pentagon, first make a perfect pattern then attach it to a board. Put the pattern against the auxiliary fence well before the blade and push it through. Rotate the pattern to the next side and make a similar cut. Do this for all five sides and you have a pentagon exactly the same as the pattern. Watch closely for cut off pieces accumulating under the fence and remove as necessary. Don said he turns off the saw and removes the cutoffs after every cut to avoid them binding in the enclosed space and kicking back.
This setup ends up working like a router with a bushing that follows the pattern, with a couple of major differences. The router can follow curves, as well as straight cuts, while the table saw method will only work on straight cuts. However, the table saw can be set to cut at an angle, which is essential for joining three-dimensional shapes like a polyhedron. The table saw method also allows the pattern to be followed with only one step, while the router method usually requires a rough cut beyond the pattern (done with a saw) before the finish cut with the router. Both methods have their advantages, but the table saw wins on the straight cuts, which was Don’s focus. As a matter of fact, Don started his presentation showing several pictures of woodworking with organic shapes and all of them were crossed out with big X’s. Don doesn’t like curves.
The Slippery Truth
When you are working in your shop it is important to have control of your work. Work surfaces, especially tables, should support your lumber and provide as little resistance as possible. This makes your job safer, more accurate, causes less fatigue, and just makes it more enjoyable. It is not instinctual to make your work area slick. But, in the right place, slick is exactly what you need.
For making surfaces slick there are two excellent options–one temporary and one permanent. The temporary solution is to apply something to the surface, like wax. There are also sprays available made with different compounds, but I recommend good old Johnson’s Paste Wax.
You can use wax for all of your tools with metal or wood parts. I use it on all of my fixtures and jigs where I want less friction, especially my crosscut sled. You should wax every stationary power tool table in your shop. The obvious ones are the table saw, jointer, router table and planer. I also use it on my hand power tools, including the jig saw and router. If you want the wood to glide along nicely, wax it.

No need for wax here. The planer board has taller sides and an UHMW surface to keep the boards going through smoothly and without end snipe.

The planer board has a piece of plywood mounted to the bottom to hook the bed of the planer. This is all that holds the board in place and makes for easy removal when you need the extra width.

The outfeed side of the planer board can be longer than the factory table for more support. This board is 48" long, but could be longer if you have the space.
The permanent solution is to use UHMW (Ultra-high molecular weight) plastic. I have found this most useful on the planer. As a matter of fact, setting up a table board with a sheet of UHMW was one of the first things I did once I got my new planer up and running. I used a sheet of 3/8″ thick UHMW plastic on top of a box made from 3/4″ plywood that is easily removed from my planer. The only adjustment to the planer was to move the bed rollers all of the way down and out of the picture. I was happy to do this because I think bed rollers are a terrible solution to the problem of boards getting stuck in the planer. No matter how they are adjusted they make the ends of the boards snipe every time. In contrast, boards never, never, never get stuck on the UHMW and having a flat bed with no bed rollers eliminates the snipe. Lumber just goes in one end and out the other with no dip on the ends.
The UHMW is available in sheets and adhesive-backed strips. The strips can be applied to fences and jigs where friction can be a problem. The strips and smaller pieces are available at Woodcraft or Rockler and the larger pieces I purchase from Regal plastics here in St. Louis. They aren’t cheap (a 36″ x 48″ pieces cost about $50), but well worth it.
Before you start your next project, wax your work surface or add a piece of UHMW plastic. You will wonder why you hadn’t done it sooner.
Calculate Board Feet? Go Figure.
Figuring out board feet is a way of life for me. Both logs and the lumber produced are figured in board feet, so I can’t really escape it, whether I am in the shop or at the sawmill. It is easy for me to forget that this isn’t an everyday occurrence for everyone else, even full-time woodworkers. I know that most woodworkers can explain what a board foot is, or at least won’t admit that they don’t know what it is, but I am still surprised when I ask someone how much lumber they need and they respond along the lines of, “Oh, six or seven boards.” This doesn’t tell me much because I don’t know how thick, long or wide those six or seven boards are in someone else’s mind. That’s where board feet come into play.
Board feet is a measure of the volume of wood, not just the surface area. A single board foot measures one square foot x 1″ thick. By the way, the thickness is based on the rough-cut thickness, not the finish-planed thickness. So, 4/4 thick hardwood lumber (rough-sawn at 1-1/8″ thick and finish-planed to 3/4″ thick) that has one square foot of surface is equal to one board foot. If that same square foot was 2″ thick, it would measure two board feet.
It would be easy enough to figure it out if all wood came in 12″ x 12″ 1″ chunks, but it doesn’t. Random widths and random lengths are standard for hardwoods, which creates the need for some math and a better understanding of the calculations. Let’s start with just a single board. Here are three ways to approach it:
• Length (in inches) x Width (in inches) x Thickness (in inches) ÷ 144
• Length (in feet) x Width (in inches) x Thickness (in inches) ÷ 12
• Length (in feet) x Width (in feet) x Thickness (in inches)
Let’s plug in the dimensions of a specific board to see how it works. The measurements are Length (96″ or 8′) x Width (9″ or .75′) x Thickness (1.5″)
• Length (96″) x Width (9″) x Thickness (1.5) = 1296 ÷ 144 = 9 bd. ft.
• Length (8′) x Width (9″) x Thickness (1.5) = 108 ÷ 12 = 9 bd. ft.
• Length (8′) x Width (.75′) x Thickness (1.5) = 9 bd. ft.
When measuring a stack of boards it is time-consuming and sometimes impossible to measure each individual board, so averages and estimations come into play. When approaching a stack of wood, I start off by trying to get an average length. This is done by eye and is more accurate if the boards are closer in length. It is difficult to get a good average in a stack that ranges from 16′ to 4′. In that situation it is best to make a couple of groups if you can and then get an average. After you get an average length of the stack, measure the width of the stack. Be sure to subtract the air-spaces from the average width of the stack. Next, get the thickness of the boards. Take the time to make separate piles for different thicknesses. If the pile is a mixture of thicknesses an average can also be taken. The last bit of accounting is to determine the number of layers in the stack. Here’s how the calculations go for stacks of wood:
• Length (in inches) x Width (in inches) x Thickness (in inches)
x Layers ÷ 144
• Length (in feet) x Width (in inches) x Thickness (in inches)
x Layers ÷ 12
• Length (in feet) x Width (in feet) x Thickness (in inches)
x Layers
Here are some real dimensions to see how it plays out. The average measurements of the stack are Length (120″ or 10′) x Width (48″ or 4′) x Thickness (1″) x 20 Layers:
• Length (120″) x Width (48″) x Thickness (1″)
x Layers (20) = 115,200 ÷ 144 = 800 bd. ft.
• Length (10′) x Width (48″) x Thickness (1″)
x Layers (20) = 9600 ÷ 12 = 800 bd. ft.
• Length (10′) x Width (4′) x Thickness (1″)
x Layers (20) = 800 bd. ft.
I normally calculate using inches divided by 144 for all the measurements because my random length lumber is very random. Lumber from large mills is usually cut to the nearest foot with packs consisting of only two lengths, 8′ and 9′, for example. In that case, using feet instead of inches is the simpler method.
The easiest to calculate is 12′ long, 1″ thick lumber. An 8″ wide board is 8 bd. ft., no calculation necessary. Just change inches to feet and go home.
Jointing A Straight Board: The “Reverse Rainbow” Method
I use the jointer a lot. I use it to flatten the face of all the lumber I process. Then, after planing the lumber to thickness, I use it again to create at least one glue-line edge. Cleaning up hundreds of board feet adds up to more than a thousand passes on the jointer per day. I often think that I could do a class on just using the jointer because I have tricks that I want to share. Then I tell myself that using the jointer would be a boring class and even if I made it exciting no one would come because they wouldn’t think that there was much to know about the jointer. To those of you who think you know too much, I say, “Phooey!” Here is lesson #1:
Click here for a printable “Reverse Rainbow” version.
The “Reverse Rainbow,” remember the term and you will remember the way to a brighter future, filled with consistently straight lumber and large pots of gold. The Reverse Rainbow is my way of reminding myself which way the bow of the board should be facing. Simple math and physics, with perhaps a little geometry thrown in, dictate that the Reverse Rainbow is achieved by placing the board on the planer with the middle on the bed and the ends in the air. This is in relation to the regular “Rainbow” that calls for the board to be placed on the planer with the ends on the table and the middle in the air.
The Reverse Rainbow seems counter intuitive to most. Everyone thinks that the jointer can’t make a straight edge when the board is sitting as unstable as a rocking chair and unable to hold its position flat on the table. Surely, flipping the board over and placing the two ends on the table will provide more stability and, in turn, more accuracy. However, that is just not the case.
The problem with putting the arch of the board up is that as the board is moved in to the jointer, it is moved upwards. This cause an arch in the cut. It will be less than before, but there will still be an arch. The next pass will be straighter, but still not entirely straight. The only way that this method can produce perfectly straight lumber is if the length of the board is always supported on the infeed and outfeed tables. This means shorter boards or a jointer with auxiliary tables for additional length.
To avoid having to make longer tables for your jointer, just flip the board over. Put the belly of the board on the jointer and start feeding it in. I do my first pass with the leading edge of the board starting on top of the outfeed table. I basically set it down just beyond the cutter head (the outfeed table stops the boards from being directly sucked in to the machine) and push it through. Keep the pressure on the outfeed table and try to maintain a straight line that sits flat on the table as long as you can. Remember, keep the pressure on the outfeed table.
This first pass will tell you all you need to know. If the bow is not too large, this first pass may run a long edge that can be cleaned up with just one more pass along the entire length. If the bow is large, the new edge may only run a third of the length. If that is the case, run the board again just like you did the first time. Start with the leading edge on the outfeed table and watch what happens. The angle of your edge will change and the belly of the board will become more centered along its length. Keep doing this until your unplaned ends are the same length, which shows that you have the angle correct and need to now just take off material until the entire edge is straight. For the finish pass, start on the infeed table, not the outfeed table, and run the entire length of the board. Slow down your feed rate to help reduce chipout, and watch your outfeed table to make sure the board sits flat through the final pass.
That’s all there is to it. Just remember to turn the rainbow over and you will get great results every time.
Utility Knives And Plastic Don’t Mix
Remember: Utility knives and plastic don’t mix.






